

DNA SEQUENCE ALIGNMENT USING PROGRAMME BY ALGORITHM

Sujana, G. and

Jawaharlal Nehru Technological University Anantapur, Anantapur

ARTICLE INFO ABSTRACT

The code has two classes, the first one named Dynamic
cs. I will discuss the details of Dynamic
describes the ma
dynamic programming algorithm. The first method is named
the matrix a
algorithm starts with shorter prefixes and uses previously computed results to solve the problem for
larger prefixes. The second method named
Equation 1. The third method is named
traversing the cell matrix (N

Copyright © 2014 Sujana and Harinatha Reddy. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The technique of dynamic programming can be applied to
produce global alignments via the Needleman
algorithm, and local alignments via the
algorithm. In typical usage, protein alignments use a
substitution matrix to assign scores to amino
mismatches, and a gap penalty for matching an amino acid in
one sequence to a gap in the other. DNA and RNA alignments
may use a scoring matrix, but in practice often simply assign a
positive match score, a negative mismatch score, and a
negative gap penalty. (In standard dynamic programming, the
score of each amino acid position is independent of the identity
of its neighbors, and therefore base stacking
taken into account. However, it is possible to account for such
effects by modifying the algorithm). A common extension to
standard linear gap costs, is the usage of two different gap
penalties for opening a gap and for extending a gap. Typically
the former is much larger than the latter, e.g.
and -2 for gap extension. Thus, the number
alignment is usually reduced and residues and gaps are kept
together, which typically makes more biological sense. The
Gotoh algorithm implements affine gap costs by using three
matrices.

Dynamic programming can be useful in aligning nucleot
protein sequences, a task complicated by the need to take into
account frame shift mutations (usually insertions or deletions).
The frame search method produces a series of global or local
pair wise alignments between a query nucleotide sequence and

*Corresponding author: Harinatha Reddy, A.
Jawaharlal Nehru Technological University Anantapur, Anantapur, A.P. India

ISSN: 0975-833X

Vol. 6, Issue, 11, pp.10004

Article History:

Received 17th August, 2014
Received in revised form
06th September, 2014
Accepted 21st October, 2014
Published online 30th November, 2014

Key words:

Dynamic Programming,
DNA Sequence alignment.

REVIEW ARTICLE

DNA SEQUENCE ALIGNMENT USING PROGRAMME BY ALGORITHM

Sujana, G. and *Harinatha Reddy, A.

Jawaharlal Nehru Technological University Anantapur, Anantapur, A.P. India

ABSTRACT

The code has two classes, the first one named Dynamic Programming.cs and the second named Cell.
cs. I will discuss the details of Dynamic Programming.cs class in the following lines because it
describes the main idea of my article. The first class contains three methods that describe the steps of
dynamic programming algorithm. The first method is named Intialization_Step
the matrix a(i,j) that holds the similarity between arbitrary prefixes of the two sequences. The
algorithm starts with shorter prefixes and uses previously computed results to solve the problem for
larger prefixes. The second method named Get_Maxcomputes the value of the c
Equation 1. The third method is named Traceback_Step. This method will produce the alignment by
traversing the cell matrix (N-1,M-1) back towards the initial entry of the cell matrix (1,1).

is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

can be applied to
Needleman-Wunsch

, and local alignments via the Smith-Waterman
. In typical usage, protein alignments use a

to assign scores to amino-acid matches or
for matching an amino acid in

to a gap in the other. DNA and RNA alignments
may use a scoring matrix, but in practice often simply assign a
positive match score, a negative mismatch score, and a
negative gap penalty. (In standard dynamic programming, the

ion is independent of the identity
base stacking effects are not

taken into account. However, it is possible to account for such
A common extension to

standard linear gap costs, is the usage of two different gap
penalties for opening a gap and for extending a gap. Typically
the former is much larger than the latter, e.g. -10 for gap open

2 for gap extension. Thus, the number of gaps in an
alignment is usually reduced and residues and gaps are kept
together, which typically makes more biological sense. The
Gotoh algorithm implements affine gap costs by using three

Dynamic programming can be useful in aligning nucleotide to
protein sequences, a task complicated by the need to take into

mutations (usually insertions or deletions).
The frame search method produces a series of global or local

r wise alignments between a query nucleotide sequence and

Jawaharlal Nehru Technological University Anantapur, Anantapur, A.P. India.

a search set of protein sequences, or vice versa. Its ability to
evaluate frame shifts offset by an arbitrary number of
nucleotides makes the method useful for sequences containing
large numbers of indels, which can be very difficult to align
with more efficient heuristic methods. In practice, the method
requires large amounts of computing power or a system whose
architecture is specialized for dynamic programming. The
BLAST and EMBOSS suites provide basic tools for creating
translated alignments (though some of these approaches take
advantage of side-effects of sequence searching capabilities of
the tools). More general methods are available from both
commercial sources, such as Frame
of the Accelrys GCG package, and
as Genewise.

The dynamic programming method is guaranteed to find an
optimal alignment given a particular scoring function;
however, identifying a good scoring function is often an
empirical rather than a theoretical matter. Although dynamic
programming is extensible to more than two sequences, it is
prohibitively slow for large numbers of or extremely long
sequences (Sniedovich, 2010)

Sequence alignment is a way of arranging the sequences of
DNA, RNA, or protein to identify regions of similarity that
may be a consequence of functional,
relationships between the sequences
edu/~vazirani/algorithms.html)
nucleotide or amino acid residues are typically represented as
rows within a matrix. Gaps are inserted between the
that identical or similar characters are aligned in successive
columns.

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 6, Issue, 11, pp.10004-10008, November, 2014

 INTERNATIONAL

 z

DNA SEQUENCE ALIGNMENT USING PROGRAMME BY ALGORITHM

, A.P. India

Programming.cs and the second named Cell.
Programming.cs class in the following lines because it

in idea of my article. The first class contains three methods that describe the steps of
Intialization_Step, this method prepares

that holds the similarity between arbitrary prefixes of the two sequences. The
algorithm starts with shorter prefixes and uses previously computed results to solve the problem for

computes the value of the cell (j,i) by the
. This method will produce the alignment by

1) back towards the initial entry of the cell matrix (1,1).

is an open access article distributed under the Creative Commons Attribution License, which permits

a search set of protein sequences, or vice versa. Its ability to
ame shifts offset by an arbitrary number of

nucleotides makes the method useful for sequences containing
large numbers of indels, which can be very difficult to align
with more efficient heuristic methods. In practice, the method

computing power or a system whose
architecture is specialized for dynamic programming. The

suites provide basic tools for creating
translated alignments (though some of these approaches take

effects of sequence searching capabilities of
the tools). More general methods are available from both

Frame Search, distributed as part
, and Open Source software such

The dynamic programming method is guaranteed to find an
optimal alignment given a particular scoring function;
however, identifying a good scoring function is often an

a theoretical matter. Although dynamic
programming is extensible to more than two sequences, it is
prohibitively slow for large numbers of or extremely long

is a way of arranging the sequences of
to identify regions of similarity that

may be a consequence of functional, structural, or evolutionary
relationships between the sequences (http://www.cs.berkeley.

). Aligned sequences of
residues are typically represented as

. Gaps are inserted between the residues so
that identical or similar characters are aligned in successive

INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Interpretation

If two sequences in an alignment share a common ancestor,
mismatches can be interpreted as point mutations and gaps as
indels (that is, insertion or deletion mutations) introduced in
one or both lineages in the time since they diverged from one
another. In sequence alignments of proteins, the degree of
similarity between amino acids occupying a particular position
in the sequence can be interpreted as a rough measure of how
conserved a particular region or sequence motif is among
lineages. The absence of substitutions, or the presence of only
very conservative substitutions (that is, the substitution of
amino acids whose side chains have similar biochemical
properties) in a particular region of the sequence, suggest that
this region has structural or functional importance. Although
DNA and RNA nucleotide bases are more similar to each other
than are amino acids, the conservation of base pairs can
indicate a similar functional or structural role (Eddy, 2004).

Alignment methods

Very short or very similar sequences can be aligned by hand.
However, most interesting problems require the alignment of
lengthy, highly variable or extremely numerous sequences that
cannot be aligned solely by human effort. Instead, human
knowledge is applied in constructing algorithms to produce
high-quality sequence alignments, and occasionally in
adjusting the final results to reflect patterns that are difficult to
represent algorithmically (especially in the case of nucleotide
sequences). Computational approaches to sequence alignment
generally fall into two categories: global alignments and local
alignments. Calculating a global alignment is a form of global
optimization that "forces" the alignment to span the entire
length of all query sequences. By contrast, local alignments
identify regions of similarity within long sequences that are
often widely divergent overall. Local alignments are often
preferable, but can be more difficult to calculate because of the
additional challenge of identifying the regions of similarity. A
variety of computational algorithms have been applied to the
sequence alignment problem. These include slow but formally
correct methods like dynamic programming. These also include
efficient, heuristic algorithms or probabilistic methods
designed for large-scale database search, that do not guarantee
to find best matches (Nocedal and Wright, 2006).

Representations

Alignments are commonly represented both graphically and in
text format. In almost all sequence alignment representations,
sequences are written in rows arranged so that aligned residues
appear in successive columns. In text formats, aligned columns
containing identical or similar characters are indicated with a
system of conservation symbols. As in the image above, an
asterisk or pipe symbol is used to show identity between two
columns; other less common symbols include a colon for
conservative substitutions and a period for semi conservative
substitutions. Many sequence visualization programs also use
color to display information about the properties of the
individual sequence elements; in DNA and RNA sequences,
this equates to assigning each nucleotide its own color. In
protein alignments, such as the one in the image above, color is

often used to indicate amino acid properties to aid in judging
the conservation of a given amino acid substitution. For
multiple sequences the last row in each column is often the
consensus sequence determined by the alignment; the
consensus sequence is also often represented in graphical
format with a sequence logo in which the size of each
nucleotide or amino acid letter corresponds to its degree of
conservation (Cormen et al., 2001).

Sequence alignments can be stored in a wide variety of text-
based file formats, many of which were originally developed in
conjunction with a specific alignment program or
implementation. Most web-based tools allow a limited number
of input and output formats, such as FASTA format and
GenBank format and the output is not easily editable. Several
conversion programs that provide graphical and/or command
line interfaces are available, such as READSEQ and EMBOSS.
There are also several programming packages which provide
this conversion functionality, such as BioPerl and BioRuby.

Global and local alignments

Illustration of global and local alignments demonstrating the
'gappy' quality of global alignments that can occur if sequences
are insufficiently similar

Global alignments, which attempt to align every residue in
every sequence, are most useful when the sequences in the
query set are similar and of roughly equal size. (This does not
mean global alignments cannot end in gaps.) A general global
alignment technique is the Needleman–Wunsch algorithm,
which is based on dynamic programming. Local alignments are
more useful for dissimilar sequences that are suspected to
contain regions of similarity or similar sequence motifs within
their larger sequence context. The Smith–Waterman algorithm
is a general local alignment method also based on dynamic
programming. Hybrid methods, known as semiglobal or
"glocal" (short for global-local) methods, attempt to find the
best possible alignment that includes the start and end of one or
the other sequence. This can be especially useful when the
downstream part of one sequence overlaps with the upstream
part of the other sequence. In this case, neither global nor local
alignment is entirely appropriate: a global alignment would
attempt to force the alignment to extend beyond the region of
overlap, while a local alignment might not fully cover the
region of overlap (Sniedovich, 2006).

Pairwise alignment

Pairwise sequence alignment methods are used to find the best-
matching piecewise (local) or global alignments of two query
sequences. Pairwise alignments can only be used between two
sequences at a time, but they are efficient to calculate and are

10005 Sujana and Harinatha Reddy, Dna sequence alignment using programme by algorithm

often used for methods that do not require extreme precision
(such as searching a database for sequences with high
similarity to a query). The three primary methods of producing
pairwise alignments are dot-matrix methods, dynamic
programming, and word methods;(1) however, multiple
sequence alignment techniques can also align pairs of
sequences. Although each method has its individual strengths
and weaknesses, all three pairwise methods have difficulty
with highly repetitive sequences of low information content -
especially where the number of repetitions differ in the two
sequences to be aligned. One way of quantifying the utility of a
given pairwise alignment is the 'maximum unique match'
(MUM), or the longest subsequence that occurs in both query
sequence. Longer MUM sequences typically reflect closer
relatedness (Denardo, 2003).

Dot-matrix methods

A DNA dot plot of a humanzinc fingertranscription factor
(GenBank ID NM_002383), showing regional self-similarity.
The main diagonal represents the sequence's alignment with
itself; lines off the main diagonal represent similar or repetitive
patterns within the sequence. This is a typical example of a
recurrence plot.

The dot-matrix approach, which implicitly produces a family
of alignments for individual sequence regions, is qualitative
and conceptually simple, though time-consuming to analyze on
a large scale. In the absence of noise, it can be easy to visually
identify certain sequence features—such as insertions,
deletions, repeats, or inverted repeats—from a dot-matrix plot.
To construct a dot-matrix plot, the two sequences are written
along the top row and leftmost column of a two-dimensional
matrix and a dot is placed at any point where the characters in
the appropriate columns match—this is a typical recurrence
plot. Some implementations vary the size or intensity of the dot
depending on the degree of similarity of the two characters, to
accommodate conservative substitutions. The dot plots of very
closely related sequences will appear as a single line along the
matrix's main diagonal. Problems with dot plots as an
information display technique include: noise, lack of clarity,
non-intuitiveness, difficulty extracting match summary
statistics and match positions on the two sequences. There is
also much wasted space where the match data is inherently
duplicated across the diagonal and most of the actual area of
the plot is taken up by either empty space or noise, and, finally,
dot-plots are limited to two sequences. None of these
limitations apply to Miropeats alignment diagrams but they
have their own particular flaws. Dot plots can also be used to
assess repetitiveness in a single sequence. A sequence can be
plotted against itself and regions that share significant

similarities will appear as lines off the main diagonal. This
effect can occur when a protein consists of multiple similar
structural domains.

MATERIALS AND METHODS

Sequence alignment is the procedure of comparing two (pair-
wise alignment) or more (multiple alignment) sequences by
searching for a series of characters that are in the same order in
all sequences. Two sequences can be aligned by writing them
across a page in two rows. Identical or similar characters are
placed in the same column, and non identical ones can either be
placed in the same column as a mismatch or against a gap (-) in
the other sequence. Sequences that are aligned in this manner
are said to be similar. Sequence alignment is useful for
discovering functional, structural, and evolutionary information
in biological sequences. Consider the following DNA
Sequences GACGGATTAG and GATCGGAATAG. Notice
that when we align them one above the other:

GA-CGGATTAG
GATCGGAATAG

The only differences are marked with colors in the above
sequences. Observe that the gap (-) is introduced in the first
sequence to let equal bases align perfectly. the goal of this
article is to present an efficient algorithm that takes two
sequences and determine the best alignment between them. The
total score of the alignment depends on each column of the
alignment. If the column has two identical characters, it will
receive value +1 (a match). Different characters will give the
column value -1 (a mismatch). Finally a gap in a column drops
down its value to -2 (Gap Penalty). The best alignment will be
one with the maximum total score. The above alignment will
give a total score: 9 × 1 + 1 × (-1) + 1 × (-2) = 6. These
parameters match, mismatch and gap penalty can be adjusted to
different values according to the choice of sequences or
experimental results.

One approach to compute similarity between two sequences is
to generate all possible alignments and pick the best one.
However, the number of alignments between two sequences is
exponential and this will result in a slow algorithm so,
Dynamic Programming is used as a technique to produce faster
alignment algorithm. Dynamic Programming tries to solve an
instance of the problem by using already computed solutions
for smaller instances of the same problem. Giving two
sequences Seq1 and Seq2 instead of determining the similarity
between sequences as a whole, dynamic programming tries to
build up the solution by determining all similarities between

10006 International Journal of Current Research, Vol. 6, Issue, 11, pp.10004-10008, November, 2014

arbitrary prefixes of the two sequences. The algorithm starts
with shorter prefixes and uses previously computed results to
solve the problem for larger prefixes.

Let M =size of Seq1 and N= size of Seq2 ,the computation is
arranged into an (N+1) × (M+1) array where entry (j,i) contains
similarity between Seq2(1.....j) and Seq1(1.....i). The algorithm
computes the value for entry(j,i) by looking at just three
previous entries:

(j-1,i-1) Diagonal Cell to entry (j,i)
(j-1,i) Above Cell to entry (j,i)
(j,i-1) Left Cell to entry (j,i)
j-1,i
j,i
j-1,i-1
j,i-1

The value of the entry (j,i) can be computed by the following
equation:

 Equation (1.1)

where p(j,i)= +1 if Seq2(j)=Seq1(i) (match Score) and p(j,i)= -
1 if Seq2(j)!=Seq1(i).

The maximum value of the score of the alignment located in
the cell (N-1,M-1) and the +\algorithm will trace back from
this cell to the first entry cell (1,1) to produce the resulting
alignment . IF the value of the cell (j,i) has been computed
using the value of the diagonal cell, the alignment will contain
the Seq2(j) and Seq1(i). IF the value has been computed using
the above cell, the alignment will contain Seq2 (j) and a Gap
('-') in Seq1(i). IF the value has been computed using the left
cell, the alignment will contain Seq1(i) and a Gap ('-') in
Seq2(j). The resulting alignment will produce completely by
traversing the cell (N-1,M-1) back towards the initial entry of
the cell (1,1).

RESULTS AND DISCUSSIONS

Using the Code

My code has two classes, the first one named Dynamic
Programming.cs and the second named Cell.cs. I will discuss
the details of Dynamic Programming.cs class in the following
lines because it describes the main idea of my article. The first
class contains three methods that describe the steps of dynamic
programming algorithm. The first method is named

Intialization_Step, this method prepares the matrix a(i,j) that
holds the similarity between arbitrary prefixes of the two
sequences. The algorithm starts with shorter prefixes and uses
previously computed results to solve the problem for larger
prefixes.

public static Cell(,) Intialization_Step
 (string Seq1, string Seq2,int Sim,intNonSimilar,int
Gap)
 {
int M = Seq1.Length;//Length+1//-AAA
int N = Seq2.Length;//Length+1//-AAA

Cell(,) Matrix = new Cell(N, M);
 //Intialize the first Row With Gap Penalty Equal To
i*Gap
for (int i = 0; i <Matrix.GetLength(1); i++)
 {
Matrix(0, i) = new Cell(0, i, i*Gap);
 }

 //Intialize the first Column With Gap Penalty Equal To
i*Gap
for (int i = 0; i <Matrix.GetLength(0); i++)
 {
Matrix(i, 0) = new Cell(i, 0, i*Gap);
 }
 // Fill Matrix with each cell has a value result from
method Get_Max
for (int j = 1; j <Matrix.GetLength(0); j++)
 {
for (int i = 1; i <Matrix.GetLength(1); i++)
 {
Matrix(j, i) = Get_Max(i, j, Seq1, Seq2,
Matrix,Sim,NonSimilar,Gap);
 }
 }
return Matrix;
 }
The second method named Get_Maxcomputes the value of the
cell (j,i) by the Equation 1.1 .
public static Cell Get_Max(int i, int j, string Seq1,
 string Seq2, Cell(,)
Matrix,intSimilar,intNonSimilar,intGapPenality)
 {
 Cell Temp = new Cell();
intSim;
int Gap = GapPenality;
if (Seq1(i) == Seq2(j))
Sim = Similar;
else
Sim = NonSimilar;
int M1, M2, M3;
 M1 = Matrix(j - 1, i - 1).CellScore + Sim;
 M2 = Matrix(j, i - 1).CellScore + Gap;
 M3 = Matrix(j - 1, i).CellScore + Gap;
int max = M1 >= M2 ? M1 : M2;
intMmax = M3 >= max ? M3 : max;
if (Mmax == M1)
{ Temp = new Cell(j, i, M1, Matrix(j - 1, i - 1),

10007 Sujana and Harinatha Reddy, Dna sequence alignment using programme by algorithm

 Cell.PrevcellType.Diagonal); }
else
 {
if (Mmax == M2)
{ Temp = new Cell(j, i, M2, Matrix(j, i - 1),
Cell.PrevcellType.Left); }
else
 {
if (Mmax == M3)
{ Temp = new Cell(j, i, M3, Matrix(j - 1, i),

 Cell.PrevcellType.Above); }
 }
 }
return Temp;
 }
The third method is named Traceback_Step. This method will
produce the alignment by traversing the cell matrix(N-1,M-1)
back towards the initial entry of the cell matrix (1,1).
public static void Traceback_Step(Cell(,) Matrix,
string Sq1, string Sq2, List<char> Seq1, List<char> Seq2)
 {
 //List<char> Seq1 = new List<char>();
 //List<char> Seq2 = new List<char>();
 Cell CurrentCell = Matrix(Sq2.Length - 1, Sq1.Length -
1);

while (CurrentCell.CellPointer != null)
 {
if (CurrentCell.Type == Cell.PrevcellType.Diagonal)
 {
Seq1.Add(Sq1(CurrentCell.CellColumn));
Seq2.Add(Sq2(CurrentCell.CellRow));
 }
if (CurrentCell.Type == Cell.PrevcellType.Left)
 {
Seq1.Add(Sq1(CurrentCell.CellColumn));
Seq2.Add('-');
 }
if (CurrentCell.Type == Cell.PrevcellType.Above)
 {
Seq1.Add('-');
Seq2.Add(Sq2(CurrentCell.CellRow));
 }
CurrentCell = CurrentCell.CellPointer;
 }
 }
The second class in my code is named Cell.cs. This class
manipulates the cell of the matrix. Each cell has:

• A location indicated by the index of the row and index of
the column

• A value that is represented by the score of the alignment
• A pointer to a previous cell that is used to compute the

score of the current cell (Note: Pointer value "Diagonal,
Above and Left").

REFERENCES

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. 2001.

Introduction to Algorithms (2nd ed.), MIT Press and
McGraw–Hill, ISBN 0-262-03293-7. pp. 327–8.

Dasgupta S., C.H. Papadimitriou, and U.V. Vazirani,
'Algorithms', p 173, available at http://www.cs.berkeley.
edu/~vazirani/algorithms.html

Denardo, E.V. 2003. Dynamic Programming: Models and
Applications, Mineola, NY: Dover Publications,
ISBN 978-0-486-42810-9

Eddy, S. R. 2004. What is dynamic programming?, Nature
Biotechnology, 22, 909–910.

Nocedal, J, Wright, S. J. 2006. Numerical Optimization, page
9, Springer.

Sniedovich, M. 2006. "Dijkstra’s algorithm revisited: the
dynamic programming connexion" (PDF), Journal of
Control and Cybernetics, 35 (3): 599–620. Online version
of the paper with interactive computational modules.

Sniedovich, M. 2010. Dynamic Programming: Foundations
and Principles, Taylor and Francis, ISBN 978-0-8247-
4099-3.

10008 International Journal of Current Research, Vol. 6, Issue, 11, pp.10004-10008, November, 2014

