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ARTICLE INFO                                       ABSTRACT 
 
 

 

In recent years it has been acknowledged that to significantly improve biological system 
performance and productivity, control, including optimal control, should be implemented online. 
The dynamics of biological processes are highly non-linear and key variables are difficult to 
measure. As an aid to contributing solutions to the twin difficulties of complex dynamics and 
measurement difficulty a relatively simple mathematical model has been developed for the 
purpose of evaluating optimal controllers. In this paper a simulation of fed-batch fermentation is 
developed which includes the no-linear dynamics of the process using single-term Haar wavelet 
series (STHW) method. 
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INTRODUCTION 
 
The control of a biological process is based on the 
measurement of physical, chemical or biochemical properties 
and environmental parameters of the process. Often many 
important variables and parameters have to be calculated or 
estimated because of their unmeasurability , such as cell mass 
and substrate concentrations in a fermentation process. Most 
of estimation technique is to run the simulation models of the 
process in real-time and in parallel with the real process giving 
both the same inputs. Instead of the dynamics of the systems, 
the simulation technique can be applied to the systems for 
optimal control because lots of non-linear systems are 
generally very complex and not completely known, like a 
fermentation process from [1-8 and 19]. 
 
     This paper describes in detail the dynamic models of two 
non-linear systems fed-batch and batch fermentation processes 
in detail and discusses results of the analysis. In order to solve 
the state equations for the non-linear systems a STHW for the 
integration of the nonlinear differential equations were 
developed. The state models have been expanded to include 
the various nonlinearities. 
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STRUCTURE OF A NON-LINEAR SYSTEM 
 
Description of Dynamics 
 
A fermentation process is a classical complicated, non-linear, 
time varying system. Its dynamics are not non measurable, 
such as biomass and substrate concentrations. The dynamics of 
the system are described by a series expanded models. In fact, 
a fed-batch, batch, continuous culture of baker’s yeast or also 
many other organisms, can be described in fully aerobic 
conditions by the following (non-linear) models:[7] 
 

(i) Biomass: 

 

      tXtD
dt

tdX
.     (1) 

 
(ii) Substrate: 
 

        tSStDtXK
dt

tdS
fi  ...1    (2) 
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SPECIAL ISSUE 
 



(iii) Fermentor volume of the growth culture: 
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(iv) Oxygen concentration 
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(v) Carbon dioxide concentration 
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(vi) Ethanol concentration 
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Where COSX ,,,  and E  are the concentration of biomass, 

substrate, oxygen, carbon-dioxide and ethanol respectively, 

X and S are nonmeasurable; CO,  and E  can be measured; 

OUR  is the oxygen uptake rate. OTR  is the oxygen transfer 

rate. CEP is the 2CO transfer rate. ECR  is the ethanol 

concentration rate. D  is the dilution rate. fiS is the substrate 

in the influent.   is the specific growth rate with maximum 

value max . 1K  is the yield coefficient. 1O  is dissolved 

oxygen and 1C  is 2CO concentrations. 

pocaetccas KKKKKKKK ,,,,,, 12,1  and max are known. 

 
Models of the specific growth rate (  ) 

 
The specific growth rate   is a key time-varying parameter 

for description of biomass growth, substrate consumption and 
products formation. For a fermentation process, the most 

commonly used models for    are presented as follows: [6] 

[7] 
 
(i) Monod’s model 
 
A functional relationship between the specific growth   and 

an essential compound’s concentration was proposed by 
Monod. 

    
  tSK

tS
s

s 
 .max   (7) 

 
(ii) Ollson’s model: 
 
Aerobic fermentation are processes where the microorganism 
need oxygen to develop properly. In such case, dissolved 
oxygen (O) in the culture medium can be considered an 
additional substrate. This law which has Monod similarities is 
ofen referred to as the Ollson model for specific growth rate   

. 
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 This model considers the influence of substrate 
concentration S and biomass concentration X. [7]. 
 
(iii) Contois model 
 
The biomass growth is often presumed to slow down at high 
biomass concentrations. A possible model in this case is the 
following form: 

  

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C .
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This model considers the influence of substrate concentration 
S and biomass concentration X. [7]. 
 
COMPUTER SIMULATION 
 
In order to assess the system dynamics and to optimize 
controller design, the system models were simulated in 
computer software. The principle of all numerical integration 

methods is to estimate the system states at time  tt   

given the state at time “ t ” where “ t ” is the sampling period 
[2]. For a general equation of the form  
  

 tuf ,,       (10) 

At each step computation are done by some formula normally 
based upon the Taylor series, 

          .............
!2

.
2

t
t

tttht   
                      (11) 

 

If t is chosen to be sufficiently small and if sufficient higher 

order derivatives of “ ” and powers of “ ” are taken, then 

the value  tt   can be accurately found. A classical first 

order Euler method and STHW have been applied to the 
models for integration and are compared to the experimental 
data. These techniques are widely used in engineering for a 
non-linear system. 
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Table 1: Values for Experimental Data  – Mond’s Model 
 

 
S.No 

Experimental Data  – Mond’s Model 

Time Biomass Substrate 
Volume of 
fermentor 

Oxygen 
Carbon-
dioxide 

Ethanol Mond’s Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.6179 0.6395 1.6567 0.0496 0.0249 0.0154 0.0132 
3 1.0 2.6504 0.9814 2.7446 0.0536 0.0970 0.0374 0.0255 
4 1.5 4.3963 1.4563 4.5470 -0.0929 0.2672 0.0517 0.0257 
5 2.0 7.3839 2.0895 7.5329 -0.6511 0.6312 0.0141 0.0140 

 
Table 2: Values for Euler Method – Mond’s Model 

 

 
S.No 

Euler Method – Mond’s Model 

Time Biomass Substrate 
Fermentor 
Volume 

Oxygen 
Carbon-
dioxide 

Ethanol Mond’s Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.4750 0.5980 1.5050 0.0533 0.0000 0.0013 0.0050 
3 1.0 2.1941 0.8703 2.2650 0.0927 0.02122 0.0042 0.01141 
4 1.5 3.2911 1.2413 3.4089 0.0841 0.0945 0.0106 0.1923 
5 2.0 4.9778 1.7412 5.1303 -0.0545 0.2818 0.0234 0.0284 

 
Table 3: Values for STHW – Mond’s Model 

 

 
S.No 

STHW – Mond’s Model 

Time Biomass Substrate 
Volume of 
fermentor 

Oxygen 
Carbon-
dioxide 

Ethanol Mond’s Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.6181 0.6395 1.6570 0.0496 0.0179 0.0086 0.0093 
3 1.0 2.6512 0.9813 2.7456 0.0536 0.0862 0.0228 0.0190 
4 1.5 4.3984 1.4561 4.5494 -0.0934 0.2756 0.0391 0.0239 
5 2.0 7.3891 2.0887 7.5383 -0.6530 0.7302 0.0413 0.0108 

 
Table 4 : Values for Experimental Data  – Ollson’s Model 

 

 
S.No 

Experimental Data  – Ollson’s  Model 

Time Biomass Substrate 
Volume of 
fermentor 

Oxygen 
Carbon-
dioxide 

Ethanol Ollson’s  Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.6179 0.6395 1.6567 0.0495 0.0249 0.0156 0.0084 
3 1.0 2.6504 0.9814 2.7446 0.0536 0.0970 0.0374 0.0179 
4 1.5 4.3963 1.4563 4.5470 -0.0929 0.2673 0.0517 0.0232 
5 2.0 7.3839 2.0895 7.5329 -0.6511 0.6312 0.0141 0.0089 

 
Table 5 : Values for Euler Method – Ollson’s Model 

 

 
S.No 

Euler Method – Ollson’s Model 

Time Biomass Substrate 
Fermentor 
Volume 

Oxygen 
Carbon-
dioxide 

Ethanol Ollson’s  Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.4750 0.5980 1.5050 0.0533 0.0000 0.0013 0.0020 
3 1.0 2.1941 0.8703 2.2650 0.0927 0.0212 0.0042 0.0078 
4 1.5 3.2911 1.2413 3.4089 0.0841 0.0945 0.0106 0.0151 
5 2.0 4.9778 1.7412 5.1303 -0.0545 0.2817 0.0234 0.0236 

 
Table 6 : Values for STHW  – Ollson’s  Model  

 

 
S.No 

STHW  – Ollson’s  Model 

Time Biomass Substrate 
Volume of 
fermentor 

Oxygen 
Carbon-
dioxide 

Ethanol Ollson’s  Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.6181 0.6395 1.6570 0.0496 0.0179 0.0086 0.0083 
3 1.0 2.6512 0.9813 2.7456 0.0536 0.0862 0.0228 0.0174 
4 1.5 4.3984 1.4561 4.5494 -0.0934 0.2746 0.0392 0.0222 
5 2.0 7.3891 2.0887 7.5383 -0.6530 0.7302 0.0413 0.0093 

 
Table 6: Values for STHW  – Contoi’s  Model 

 

 
S.No 

STHW  – Contoi’s  Model 

Time Biomass Substrate 
Volume of 
fermentor 

Oxygen 
Carbon-
dioxide 

Ethanol 
Contoi’s  
Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.6181 0.6395 1.6570 0.0496 0.0179 0.0086 0.0099 
3 1.0 2.6512 0.9813 2.7456 0.0536 0.0862 0.0228 0.0187 
4 1.5 4.3984 1.4561 4.5494 -0.0934 0.2746 0.0392 0.0209 
5 2.0 7.3891 2.0887 7.5383 -0.6530 0.7302 0.0413 0.0036 
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Fig 1: Solution curve for Monod’s Model 

 

 
 

Fig 2: Solution curve for Ollson’s Model 

 
Euler method 
 
The Euler method is the simplest. For equation (11), only a 

first power of t  is considered assuming the terms in 

 1 nt n
 are very small compared to .t  This is valid 

only if  t << 1. The Euler method has the form, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig 3: Solution curve for Contoi’s Model 
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STHW 
 

The orthogonal set of Haar wavelets  thi  is a group of 

square waves with magnitude of 1 in some intervals and 
zeros elsewhere Sekar et al.  [9-17]. In general,  
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Namely, each Haar wavelet contains one and just one square 
wave, and is zero elsewhere. Just these zeros make Haar 
wavelets to be local and very useful in solving stiff systems. 
Any function y(t), which is square integrable in the interval 

Table 7: Values for Experimental Data  – Contoi’s Model 
 

 
S.No 

Experimental Data  – Contoi’s Model 

Time Biomass Substrate 
Volume of 
fermentor 

Oxygen 
Carbon-
dioxide 

Ethanol 
Contoi’s  
Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.6178 0.6395 1.6567 0.0496 0.0249 0.0156 0.0098 
3 1.0 2.6503 0.9813 2.7446 0.0536 0.0970 0.0374 0.0199 
4 1.5 4.3963 1.4563 4.5470 -0.0929 0.2672 0.0517 0.0228 
5 2.0 7.3839 2.0895 7.5328 -0.6511 0.6312 0.0141 0.0036 

 
 

Table 8 : Values for Euler Method – Contoi’s Model 
 

 
S.No 

Euler Method – Contoi’s Model 

Time Biomass Substrate 
Fermentor 
Volume 

Oxygen 
Carbon-
dioxide 

Ethanol 
Contoi’s  
Model 

1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
2 0.5 1.4750 0.5980 1.5050 0.0533 0.0000 0.0013 0.0067 
3 1.0 2.1940 0.8703 2.2650 0.0927 0.0212 0.0042 0.0134 
4 1.5 3.2911 1.2413 3.4089 0.0841 0.0945 0.0106 0.0200 
5 2.0 4.9778 1.7412 5.1303 -0.0545 0.2818 0.0234 0.0265 

 

226                 International Journal of Current Research, Vol. 3, Issue, 6, pp.223-228, June, 2011 
 



[0,1]. Can be expanded in a Haar series with an infinite 
number of terms 
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Usually, the series expansion Eq. (13) contains an infinite 
number of terms for a smooth y(t). If y(t) is a piecewise 
constant or may be approximated as a piecewise constant, then 
the sum in Eq. (13) will be terminated after m terms, that is  
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where “T” indicates transposition, the subscript m in the 
parantheses denotes their dimensions. The integration of Haar 
wavelets can be expandable into Haar series with Haar 
coefficient matrix P[3].  

              1,0, tthPdh mmmm   

where the m-square matrix P is called the operational matrix 

of integration and single-term  
2

1
11 P . Let us define [12] 

             tMthth mm
T
mm  ,                              (15) 

and      .011 thtM   Eq.(15) satisfies    

           ,thCctM mmmmmm    

where  mc  is defined in Eq.(14) and   011 cC  .  

 
Applying a simple Euler approximation and STHW to the 
system models, the equations (1), (2), (3), (4), (5), (6), (7), (8), 
(9) have the following values given in tables and graphs. 
 
Conclusions 
 
The obtained discrete solutions using the STHW give more 
accurate values when compared to the Euler’s method . From 
the tables 1 – 9, we observe that the solutions obtained by the 
STHW match well with the experimental data of the fed-batch 
fermentation process, but the Euler’s method yields a error. It 
is to be noted that from figures 1, 2 and 3.From the error graph 
presented in figures 1, 2 and 3, we can observe that the STHW 
yields very less error (almost no error) when compared to 
Euler’s method in Mond’s Model, Ollson’s  Model and 

Contoi’s  Model . Hence, the STHW is more suitable for 
studying the simulation of the fed-batch fermentation process.  
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