

RESEARCH ARTICLE

DATA PROTECTION ALGORITHM USING AES

Anitha, P. and *Palanisamy, V

Department of Computer Science and Engineering, Alagappa University, Karaikudi-630003

ARTICLE INFO ABSTRACT

The paper aims at providing a solution for secure storage of the records in a database.
The solution should be prone to less security attacks and should take the optimal time for storage.
The algorithm used is AES of stream cipher category. The input and the key can be of variable
length. Regarding the key for the algorithm, it is the hashed value of the original key along with
the Salt value. Since stream cipher, we will encrypt byte by byte using the key. We have a
Permutation box (p-box) and Substitution box (s-box) logic to make the algorithm quite complex
and to avoid the security breaches. The Key will be in the rotation mode based on a simple logic
being implemented in the algorithm thus making it quite complex for attacks. Thus, the records
are stored in the encrypted format in the database.

© Copy Right, IJCR, 2011, Academic Journals. All rights reserved

INTRODUCTION

Network Security is becoming more and more important as
people spend more and more time connected in a network.
Security attacks include unauthorized reading a message of a
file or making any modifications of messages of a file etc., one
of the primary reasons that intruders can be successful is that
most of the information they acquire from a system is in a
form that they can read and comprehend. One solution to this
problem is, through the use of Cryptography. Cryptography
ensures that the messages cannot be intercepted or read by
anyone other than the authorized recipient. It prevents
intruders from being able to use the information that they
capture. Cryptography secures information by protecting its
confidentiality and can also be used to protect information
about the integrity and authenticity of data. To protect our
concern’s database assets, the security should be taken today.
These include encrypting data as it moves across the enterprise
networks and as it sits at rest, in storage on database systems.
Extra steps and precautions should be taken to carefully
control access this data. This paper will focus on how to
protect data at rest.

Hackers Are Not the Only Threat or Even the Most
Dangerous

Threats to the databases can come from hackers, attackers
external to our network. Without extra precautions taken to
secure the confidential data in databases, the concern’s privacy
is at risk. Here, taking the right security approach enables to
protect the critical data infrastructure.

Protecting Data with Encryption

While laws and regulations interpret “protecting privacy” in a
number of ways, any enterprise solution for protecting data —
especially data at rest-must involve two things: secure
encryption technology to protect confidential data and careful
management of access to the cryptography keys that unlock
the encrypted data.

Encryption Basics: What You Need to Know

To give sensitive data the highest level of security, it should be
stored in encrypted form. The goal of encryption is to make
data unintelligible to unauthorized readers and extremely
difficult to decipher when attacked. Encryption operations are
performed by using random encryption keys. The randomness
of keys makes encrypted data harder to attack. Keys are used
to encrypt data, but they also perform decryption. This paper
focuses on a security solution for protection of data at rest,
specifically protection of data that resides in databases. The
key used in this algorithm is obtained by having the hashed
value of the original key generated along with the salt value.
Also, the key will be in the rotation mode making quite
complex for attacks.

Related works

The first open encryption algorithm, Data Encryption Standard
(DES) was adopted by the National Institute of Standards and
Technology (NIST) to protect the sensitive information as

ISSN: 0975-833X

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 33, Issue, 6, pp.291-294, June, 2011

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Article History:

Received 13th March, 2011
Received in revised form
15th April, 2011
Accepted 20th May, 2011
Published online 14th June 2011

Key words:

Cryptography,
Encryption,
Decryption,
AES algorithm,
Stream cipher,
Hash function.

SPECIAL ISSUE

*Corresponding author: anithajoy81@gmail.com

Federal Information Processing Standard 46 (FIPS PUB 46) in
1977. The shorter length of the key reduces the security of
DES. So, Double DES and Triple DES may arise and they also
not suitable for long term use because of its slow process. The
Rijndael algorithm was adopted as an encryption standard, the
Advanced Encryption System (AES) by the NIST as FIPS
PUB 197 (FIPS 197) on November 2001 [1]. Computer
Security Objects Register (CSOR), the remarkable thing about
this entire process has been the openness as well as the
international nature of the "competition." NIST maintained an
excellent Web site devoted to keeping the public fully
informed, at http:// csrc.nist.gov/archive/aes/ [2], which is now
available as an archive site. Their Overview of the AES
Development effort has full details of the process and
algorithms. Daemen and Rijmen, AES Proposal, specifies the
Rijndael algorithm [3] and [4], a symmetric block cipher that
can process data blocks of 128 bits, using cipher keys with
lengths of 128, 192 and 256 bits. Rijndael was designed to
handle additional block sizes and key lengths, however they
are not adopted in this standard.

 Guideline for Implementing Cryptography in the Federal
Government [4],[5],[6] determines the implementations of the
algorithm that are tested by an accredited laboratory and
validated will be considered as complying with this standard.
Since cryptographic security depends on many factors besides
the correct implementation of an encryption algorithm, Federal
Government employees, and others, should also refer to NIST
Special Publication 800-21, is available at
http://csrc.nist.gov/publication/. Database Encryption Solution
using Empress RDBMS [10] white paper by Srdjan Holovac,
Empress Software Inc., January 2006. This paper focuses on a
security solution for protection of data at rest, specifically
protection of data that resides in database. Encryption, the
process of disguising data in such a way to hide its substance,
is a very effective way to achieve security for data at rest
[8],[9]. The recommended cryptographic algorithm is AES,
the larger the key length, the more computation it requires and
the greater security it provides.

The FIPS PUB specifies AES, a cryptographic algorithm,

used to protect data's, which is a symmetric block cipher that
can encrypt and decrypt information and Capable of using
keys of 128,192,256 bits to encrypt and decrypt data. For
AES-128, AES-192 and AES-256 it performs 10,12 and 14
number of rounds respectively, and these leads to a SLOW
process for encryption and decryption. Disadvantage is, the
encryption of any plaintext with a block cipher will result in
the same cipher text, when the SAME KEY is used.
Nowadays, the usage of Stream ciphers has evolved
significantly over the last 5 to 10 years only. The main
proposal is, if we maintain the keys properly, we can achieve a
secure algorithm using stream ciphers.

Proposed work

We proposed here a solution for secure storage of records in
the database which will be in the encrypted format so that the
messages cannot be intercepted or read by anyone other than
the authorized recipient. The main modules are encryption
module and decryption module and the sub-modules are
permutation module, substitution module and change key
module.

Key Generation using Hash function

 A hash function is not an encryption. Encrypted items are
always meant for eventual decryption. A hash function, on the
other hand, is meant only as a one-way operation. The whole
idea of a hash function is that it should be very difficult to
calculate the original input value, given the hash value.
If y = hash(x) is a hash function, and y and x both represent
text strings, then

 given the output y, it is very hard to deduce the
original input x.

 similar inputs will give markedly different outputs.
 input x can have arbitrary length.
 output y will have fixed length.
 there is only a trivial chance of "collisions", where

different inputs give the same output.
The clear text version of the password should be the end user's
secret. It should never be directly repeated or stored by an
application. A user inputs a password in its original, unaltered
form - that is, in "clear text". However, a database should
never store passwords in clear text. Instead, the value stored
by the database should be calculated as,

Key = hashed (clear-text- password + salt-value)

The intent here is to store text which cannot be easily reverse-
engineered back into the original password. The salt-value is a
random string added to the password. It's added to prevent
simple dictionary-style reverse engineering of the hashed
value of the plain text password. The "salt" or "salt value" is a
random or pseudo-random sequence of bytes that is combined
with the encryption password to create encryption and
authentication keys. The salt is generated by the encrypting
application and is stored unencrypted with the file data. The
addition of salt values to passwords provides a number of
security benefits and makes dictionary attacks based on
precomputed keys much more difficult. For example, The size
of the salt value depends on the length of the encryption key,
as follows:

 Key size Salt size
 128 bits 8 bytes
 192 bits 12 bytes
 256 bits 16 bytes

In this paper, the clear-text password is the user’s password
and it will be hashed along with the salt value, which is the
random sequence of bytes and the resulting value can be used
as the Key for our AES algorithm. Since Stream cipher
category, we will encrypt byte by byte using the key. The key
will be in the rotation mode making quite complex for attacks
and the records are stored in the encrypted format in the
database.

ALGORITHM

Key

Key (k) = Hash (original key + salt value)

 Consider the above key (k) value
 i=0;
 Next key=key(k) [i++];
 1. Current key = next key;
 2. Read a byte from source file.
 3. XOR->(Byte ^ Current key) -> result 1;

292 International Journal of Current Research, Vol. 3, Issue, 6, pp.291-294, June, 2011

 4. Pass result1 to pbox() -> result 2;
 5. if (i==length_of_currentkey)
 { i=0; change Key() }
 6. Next key = key(k)[i++];
 7. XOR->(result 2^next key)->result 3;
 8. Pass result 3 to sbox()->result (Encrypted value).

Pbox ()

Pbox (int n)
 1. Binary equivalent of n
 2. Fill the bits in 2 x 4 matrix by row-wise.
 3. Perform clockwise rotation
 4. Form a string by taking bits from odd position
 then even position in matrix.
 5. Reverse the digit.
 6. Complement the value.

Sbox ()

 Sbox (byte by, byte m)
 {
 X=Octal value of m
 Y=(byte ^ x) ^ 10;
 }

Change Key ()

 Change key ()
 {
 left shift each char
 In Current key by ‘n’
 }

The Result of the above operation is the Encrypted text of a
single byte in the given input. Repeat the above steps for each
and every byte of the given input. Finally, when the encrypted
text is obtained, append the salt value at the end, so that while
decrypting it, we can easily extract the salt value from the
cipher text and perform the hash function on the key with this
salt value. For Decryption, consider the cipher text obtained
from the above process and perform the reverse of the above
process yields the original plaintext. Thus, the decryption
process can be achieved.

PERFORMANCE ANALYSIS

Consider the plaintext which may be characters, string or the
both and also consider the key stream which is generated.
According to the above mentioned algorithm, the encrypted
text is obtained. Similarly, by considering the cipher text
obtained and by using the same key, we can obtain the Plain
text again. The following figure represents the conversion of
plaintext to cipher text and back to the plaintext again. By
using this algorithm, we can store the data in the database in a
well secure manner. Even if the entire database is cracked by
the intruders, they can only view the data which is in the
encrypted format (i.e.) the cipher text. Unless the intruders
know the exact key length, he cannot be able to retrieve the
records and even if he give the key length similar to the cipher
text length, he may able to get the records which is incorrect.

So knowing the exact key is important. At the same time, if
the key length is smaller than the given input, the key will be
in the rotation mode based on the iteration value and thus
making it quite complex for attacks. Thus, the records are
stored in the encrypted format in the database.

Fig. 1. Encryption and Decryption

This algorithm can be used for the sensitive data storage such
as medical records, banking information, business data and
other confidential records.

System Parameters

For our experiment, we use laptop of Intel® core ™2 Duo
CPU T6600 @ 2.20 GHZ with 3 GB RAM and 32 bit OS.

Experiment Factors

In order to evaluate the performance of the algorithm, the
parameters that the algorithms must be tested for must be
determined. The chosen factor here to determine the
performance is the algorithm’s speed to encrypt/decrypt the
data blocks of various sizes. By considering the different sizes
(0.5 MB to 20 MB), the algorithms were evaluated in terms of
the time required to encrypt and decrypt the data block. We
are comparing the AES block cipher with our algorithm,
which is a stream cipher category. The simulation program is
compiled using the default settings in .NET 2003 visual studio
for C# windows applications. The experiments will be
performed couple of times to assure that the results are
consistent and valid to compare these algorithms. This
implementation uses managed wrappers for AES (Rijindael
Managed) which is available in System. Security.
Cryptography that wraps unmanaged implementations
available in CryptoAPI. There is only a pure managed
implementation of Rijindael available in System, Security,
Cryptography which was used in the tests. As we know, the
AES block cipher takes much processing time than any other
algorithms (DES, 3DES, Blowfish) [16], our algorithm
(stream cipher) minimizes the processing time than the block
cipher.

293 International Journal of Current Research, Vol. 3, Issue, 6, pp.291-294, June, 2011

Table 1. Comparison of processing time between block
cipher and stream cipher

Data Size (MB) Time (AES

block) secs
Time (AES
stream) secs

0.5 0.6 0.3
1 1.2 0.9
2 1.9 1.4
5 4.2 2.4
10 7.8 3.9
15 12.4 7.7
20 15.3 12.1

Fig. 2. Graph representing processing time

Conclusion

Enforcing data security is a top priority for both governments
and businesses worldwide and for protecting customer’s
information such as securing the medical records, financial
records and other personal information etc. and our project
focuses on a security solution for the protection of data that
resides in the databases. Most databases are deployed and
stored in some kind of storage device such as disks etc., and
have the need to backup the data could end up in storage
device in plaintext itself. So Encryption, the process of
disguising data in such a way to hide its substance, is a very
effective way to achieve security. Thus, we use the Advanced
Encryption Standard (AES) algorithm which uses the Stream
cipher category; encrypt individual characters of a plaintext.
The Key will be in the rotation mode based on a simple logic
using in this algorithm. Hence, even if the key's length is less
than that of the input, it will be in rotation mode and thus
making it quite complex for attacks. Thus, the records are
stored in the encrypted format in the database. Even if the
entire database is cracked by the intruders, they can only view
the data which is in the encrypted format (i.e.) the cipher text.
Unless the intruders know the exact key length, he cannot be
able to retrieve the records. The Current security strategy is to
use a single cipher key for each database. A future solution
will be implemented where a key per database column can be
specified. This will allow the users to tighten their overall
security policy when encrypting additional database.

REFERENCES

[1] Federal Information Processing Standards Publications

(FIPS PUBS 197) pp. 100-235 issued by NIST after
approval by security of commerce to section 5131.

[2] Computer Security Objects Register (CSOR):
http://csrc.nist.gov/csor/., January 2001.

[3] Daemen, J. and V. Rijmen, AES Proposal: Rijndael,
AES Algorithm Submission, September 3, 2005,
available at [1].

[4] Daemen, J. and V. Rijmen, The block cipher Rijndael,
Smart Card research and Applications, LNCS 1820,
Springer-Verlag ,pp.288-296.

[5] Gladman’s, B. AES related home page
http://fp.gladman.plus.com/cryptography_technology/.

[6] Guideline for Implementing Cryptography in the
Federal Government, should also refer to NIST Special
Publication 800-21, is available at
http://csrc.nist.gov/publication/.

[7] Garfinkel SL, Shelat A. Remembrance of Data Passed:
A Study of Disk Sanitization Practices, IEEE Security
& Privacy, 1(1), pp. 17-28, 2003.

[8] Garfinkel T, Pfaff B, Chow J, Rosenblum M. Data
Lifetime is a Systems Problem, Proceedings of the 11th
Workshop on ACM SIGOPS European Workshop:
Beyond the PC, September 2004.

[9] White paper by Srdjan Holovac, Empre Chow J, Pfaff
B, Garfinkel T, Rosenblum M. Shredding your garbage:
Reducing data lifetime through secure deallocation,
Proceedings of the USENIX Security Symposium,
August 2005.

[10] Securing data at rest: Database Encryption Solution
using Empress RDBMS-white paper by Srdjan
Holovac, January 2006.

[11] Mason J, Watkins K, Eisner J, Stubblefield A. A natural
language approach to automated cryptanalysis of two-
time pads. Proceedings of the 13th ACM Conference on
Computer and Communications Security, October 2006.

[12] Griffing A. Solving XOR Plaintext Strings with the
Viterbi Algorithm. Cryptologia, 30(3), pp. 258-265,
2006.

[13] Halcrow M. eCryptfs: a Stacked Cryptographic
Filesystem. Linux Journal. April 2007.

[14] Debian Source Repository, http://ftp.de.debian.org
/debian, 2008.

[15] The GNU Privacy Guard, http://gnupg.org, 2008.
[16] Performance Analysis of Data Encryption Algorithms,

Abdel-Karim Al Tamimi, aa7@wustl.edu, Retrieved
October 1, 2008.

[17] Ferguson, N., Schneier, B., and Kohno T.,
“Cryptography Engineering: Design Principles and
Practical Applications”. New York: John Wiley and
Sons, 2010.

294 International Journal of Current Research, Vol. 3, Issue, 6, pp.291-294, June, 2011

