

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 03, pp.13276-13280, March, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SYNTHESIS AND ANTIMICROBIAL EVALUATION OF METHYLENE-BASED THIAZOLIDINONE DERIVATIVES

^{1,*}Divyanshu D. Patel, ¹Keshav C. Patel and ²Paresh S. Patel

¹Department of Chemistry, Veer Narmad South Gujarat University, Surat-395 007, Gujarat ²Department of Chemistry, Narmada College of Science and Commerce, Zadeshwar, Bharuch

ARTICLE INFO

ABSTRACT

Article History: Received 05th December, 2014 Received in revised form 18th January, 2015 Accepted 05th February, 2015 Published online 17th March, 2015

Key words:

4,4'-Methylene bis (2,5-dimethyl aniline), aromatic aldehydes, Schiff bases, 1,4-dioxane, thioglycolic acid, antimicrobial activity. Thiazolidinone derivatives have been synthesized by reacting various Schiff base with thioglycolic acid by using catalyst $ZnCl_2$ in 1,4-dioxane at room temperature. The structure of title compounds were established by elemental, IR and ¹H NMR spectral data. All the synthesized compounds were screened for in vitro antibacterial and antifungal activities on *E. coli*, *P. aeruginosa*, *S. aureus*, *S. pyogenes*, *C. albicans*, *S. cervecieaceae* and *A. clavatus*.

Copyright © 2015 Divyanshu D. Patel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The newly synthesized different Schiff's bases after purification and characterization by physical and spectral methods reacted with 1,4-dioxane in presence of ZnCl₂ to yield thiazolidinones corresponding to them. Sulphur-nitrogen containing heterocycles have wide application in medicinal chemistry. thiazolidinones are associated with anticancer (Pawar et al., 1999) and versatile pharmacological activities (Thore et al., 1996; Jaish et al., 2001) like anti-inflammatory (Kumar et al., 2009; Sondhi et al., 2006), anti-HIV (Chen et al., 2009), anti-viral (Masoud et al., 2013), antitumor (Kamel et al., 2010) and antitubercular (Mistry et al., 2013) etc. Based on the results, we have designed and synthesized a series of 3,3'-(4,4'-methylene bis (2,5-dimethyl-4, phenylthiazolidin-4-one) (2-substituted 1-phenylene))bis (5a-j). The condensation of 2,5-dimethyl aniline (1) and formaldehyde (2) in presence of hydrochloric acid at 60 $^{\circ}$ C gives 4,4'-methylene bis (2,5-dimethyl aniline) (3), which when reacted with various substituted aromatic aldehydes vielded Schiff bases 4,4'-methylene bis (N-substituted benzylidine-2,5-dimethyl aniline) (4a- j).

*Corresponding author: Divyanshu D. Patel

Department of Chemistry, Veer Narmad South Gujarat University, Surat-395 007, Gujarat Then further it produced Compound (4a- j) which on condensed with mercaptoacetic acid in the presence of 1,4-dioxane gave 3,3'-(4,4'-methylene bis (2,5-dimethyl-4, 1- phenylene))bis (2-substituted phenylthiazolidin-4-one) (5a-j). The purity of the compounds was checked by TLC and elemental analysis. Based on these studies, the structural assignment of the products was based on their IR, ¹H NMR spectral data. The title compounds were screened for their antibacterial and antifungal activity on different strains of bacteria and fungi. Thiazolidinones are the important compound owing to their large range of biological activities and industrial applications.

RESULTS AND DISCUSSION

All the synthesized compounds were characterised on the basis of their FTIR and ¹H NMR spectra data. Methyl and methylene C-H stretching vibrations observed near 2926 cm⁻¹ and 2853 cm⁻¹. Broad absorption bands observed in the region between 3080-3030 cm⁻¹ and 1620-1480 cm⁻¹ indicates the presence of C-H stretching and C=C stretching of aromatic ring. The position of various absorption bands in the spectrum is in each part. Examination of IR spectra reveals that all the band observed in the region of 1760-1655 cm⁻¹ and 700-600 cm⁻¹ indicate the presence of C=O stretching and C-S-N stretching of thiazolidine ring. The ¹H NMR spectra of the synthesized

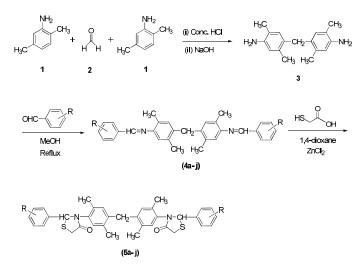
compound showed chemical shifts, which are characteristics of the anticipated structure of compounds. A singlet observed at δ 3.84 attributed to the -CH₂-, δ 3.59 for the -CH₂-S and δ 5.88 for the –N-CH-S- of cyclic thiazolidinone observed in ¹H NMR.

Experimental

Synthesis of 4,4'-methylene bis (2, 5-dimethyl aniline) (3)

4-4'-Methylene bis (2,5-dimethyl aniline) (3) was synthesized by the method described in the literature (Patel *et al.*, 2014).

General preparation of the compounds (4a- j)


A mixture of 4,4'-methylene bis (2,5-dimethyl aniline) (2.54 g., 0.01 mol) and various substituted aromatic aldehyde (0.02 mol) was taken in absolute ethanol and few drops of glacial acetic acid were added. Then, the mixture was refluxed for 4-6 h on water bath. The completion of reaction was monitored by TLC (toluene: acetone, 5.0: 5.0). The excess solvent was distilled off, and then remaining residue was poured into ice cold water. The separated solid was filtered, washed and recrystalized from ethanol to give product 4a- j. (Patel *et al.*, 2014).

General synthesis of the compounds (5a- j)

A mixture of compound (4a-j) (0.01 mol) and mercaptoacetic acid (0.02 mol) in the presence of ZnCl₂ and solvent 1,4dioxane was refluxed for 12–14 h. The completion of reaction was monitored by TLC (toluene: acetone, 5.0: 5.0) and reaction mass was dumped in ice cold water. The resulting product was washed with 5 % sodium bicarbonate solution to remove unreacted traces of thioglycolic acid. The separated solid was washed with water, dried and recrystallized from absolute ethanol to give product 5a- j. (Nandagokula *et al.*, 2013).

Scheme-1

Synthetic route for 3,3'-(4,4'-methylene bis (2,5-dimethyl-4, 1- phenylene))bis (2-substituted phenylthiazolidin-4-one) from 2,5-dimethyl aniline (5a- j).

Where, R = a. 2-F, b. 4-F, c. 4-OH, d. 2-OCH₃, e. 2,4-Cl, f. 4-Cl, g. 4-CH₃, h. 2-Cl, i. 4-OH, j. 2-NO₂.

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(2-fluorophenyl)thiazolidin-4-one) 5a

Brown colour solid powder, mp 108 0 C, yield 70%; IR (KBr, cm⁻¹): 3035 (C-H stretching, aromatic), 2935, 2820 (C-H stretching, -CH₂- group), 2925, 2865 (C-H stretching, -CH₃), 1710 (C=O stretching, thiazolidinone), 1495 (C=C stretching, aromatic), 1470, 1390 (C-H bending, -CH₃ group), 1440 (C-H bending, -CH₂- group), 1100 (C-F stretching, Fluoro); ¹H NMR (400.1 MHz, DMSO): δ_H 2.27 (s, 12H, -CH₃), 3.79 (s, 2H, -CH₂-), 3.87 (s, 4H, -CH₂-S), 5.90 (s, 2H, -N-CH-S-), 6.88-7.71 (m, 12H, Ar-H); Anal. Calcd for: C₃₅H₃₂F₂N₂O₂S₂ (614.77); found (C, 68.44), requires (C, 68.38); found (H, 5.17), requires (H, 5.25); found (N, 4.51), requires (N, 4.56).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(4-fluorophenyl)thiazolidin-4-one) 5b

Brown colour solid powder, mp 99 0 C, yield 65%; IR (KBr, cm⁻¹): 3030 (C-H stretching, aromatic), 2935, 2825 (C-H stretching, -CH₂- group), 2930, 2865 (C-H stretching, -CH₃), 1715 (C=O stretching, thiazolidinone), 1495 (C=C stretching, aromatic), 1475, 1390 (C-H bending, -CH₃ group), 1445 (C-H bending, -CH₂- group), 1100 (C-F stretching, Fluoro); ¹H NMR (400.1 MHz, DMSO): δ_H 2.25 (s, 12H, -CH₃), 3.79 (s, 2H,-CH₂-), 3.88 (s, 4H, -CH₂-S), 5.91 (s, 2H, -N-CH-S-), 6.88-7.71 (m, 12H, Ar-H); Anal. Calcd for: C₃₅H₃₂F₂N₂O₂S₂ (614.77); found (C, 68.31), requires (C, 68.38); found (H, 5.31), requires (H, 5.25); found (N, 4.49), requires (N, 4.56).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(2-hydroxyphenyl) thiazolidin- 4-one) 5c

Yellow colour solid powder, mp 101 0 C, yield 67%; IR (KBr) cm⁻¹: 3400 (O-H stretching, Ar-OH), 3060 (C-H stretching, aromatic), 2935, 2850 (C-H stretching, -CH₂- group), 2920, 2870 (C-H stretching, -CH₃), 1705 (C=O stretching, thiazolidinone), 1505 (C=C stretching, aromatic), 1470, 1380 (C-H bending, -CH₃ group), 1430 (C-H bending, -CH₂- group), 1330 (O-H bending, Ar-OH); ¹H NMR (400.1 MHz, DMSO): δ_H 2.27 (s, 12H, -CH₃), 3.79 (s, 2H, -CH₂-), 3.85 (s, 4H, -CH₂-S), 5.88 (s, 2H, -N-CH-S-), 6.88-7.69 (m, 12H, Ar-H), 12.86 (s, 2H, OH); Anal. Calcd for: C₃₅H₃₄N₂O₄S₂ (610.79); found (C, 68.77), requires (C, 68.83); found (H, 5.66), requires (H, 5.61), found (N, 4.52), requires (N, 4.59).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(2-methoxyphenyl) thiazolidin-4-one) 5d

Yellow colour solid powder, mp 110 0 C, yield 72%; IR (KBr) cm⁻¹: 3040 (C-H stretching, aromatic), 2925, 2850 (C-H stretching, -CH₂- group), 2925, 2875 (C-H stretching, -CH₃), 1710 (C=O stretching, thiazolidinone), 1510 (C=C stretching, aromatic), 1465, 1380 (C-H bending, -CH₃ group), 1435 (C-H bending, -CH₂- group); ¹H NMR (400.1 MHz, DMSO): δ_H 2.23 (s, 12H, -CH₃), 2.49 (s, 6H, -OCH₃), 3.80 (s, 2H, -CH₂-), 3.85 (s, 4H, -CH₂-S-), 5.90 (s, 2H, -N-CH-S-), 6.85-7.72 (m, 12H, Ar-H); Anal. Calcd for: C₃₇H₃₈N₂O₄S₂ (638.84); found

(C, 69.62), requires (C, 69.56); found (H, 6.09), requires (H, 6.00); found (N, 4.45), requires (N, 4.39).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(2,4-dichlorophenyl) thiazolidin -4-one) 5e

Light yellow colour solid powder, mp 115 0 C, yield 70%; IR (KBr) cm⁻¹: 3030 (C-H stretching, aromatic), 2920, 2845 (C-H stretching, -CH₂- group), 2935, 2870 (C-H stretching, -CH₃), 1680 (C=O stretching, thiazolidinone), 1510 (C=C stretching, aromatic), 1465, 1380 (C-H bending, -CH₃ group), 1445 (C-H bending, -CH₂- group), 750 (C-Cl stretching, chloro); ¹H NMR (400.1 MHz, DMSO): δ_H 2.27 (s, 12H, -CH₃), 3.65 (s, 2H, -CH₂-), 3.80 (s, 4H, -CH₂-S-), 5.94 (s, 2H, -N-CH-S-), 6.70-7.90 (m, 10H, Ar-H); Anal. Calcd for: C₃₅H₃₀Cl₄N₂O₂S₂ (716.57); found (C, 58.73), requires (C, 58.67); found (H, 4.17), requires (H, 4.22); found (N, 3.97), requires (N, 3.91).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(4-chlorophenyl)thiazolidin-4-one) 5f

Light yellow colour solid powder, mp 137 0 C, yield 68%; IR (KBr) cm⁻¹: 3050 (C-H stretching, aromatic), 2940, 2830 (C-H stretching, -CH₂- group), 2925, 2865 (C-H stretching, -CH₃), 1710 (C=O stretching, thiazolidinone), 1495 (C=C stretching, aromatic), 1470, 1390 (C-H bending, -CH₃ group), 1440 (C-H bending, -CH₂- group), 720 (C-Cl stretching, chloro); ¹H NMR (400.1 MHz, DMSO): δ_H 2.23 (s, 12H, -CH₃), 3.59 (s, 2H, -CH₂-), 3.84 (s, 4H, -CH₂-S-), 5.92 (s, 2H, -N-CH-S-), 6.76-7.95 (m, 12H, Ar-H); Anal. Calcd for: C₃₅H₃₂Cl₂N₂O₂S₂ (647.68); found (C, 64.95), requires (C, 64.90); found (H, 4.93), requires (H, 4.98); found (N, 4.28), requires (N, 4.33).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-p-tolythiazolidin-4-one) 5g

Yellow colour solid powder, mp 129 0 C, yield 69%; IR (KBr) cm⁻¹: 3040 (C-H stretching, aromatic), 2925, 2850 (C-H stretching, -CH₂- group), 2925, 2875 (C-H stretching, -CH₃), 1690 (C=O stretching, thiazolidinone), 1520 (C=C stretching, aromatic), 1465, 1380 (C-H bending, -CH₃ group), 1435 (C-H bending, -CH₂- group); ¹H NMR (400.1 MHz, DMSO): δ_H 2.25 (s, 18H, -CH₃), 3.80 (s, 2H, -CH₂-), 3.87 (s, 4H, -CH₂-S-), 5.90 (s, 2H, -N-CH-S-), 6.88-7.72 (m, 12H, Ar-H); Anal. Calcd for: C₃₇H₃₈N₂O₂S₂ (606.84); found (C, 73.17), requires (C, 73.23); found (H, 6.26), requires (H, 6.31); found (N, 4.69), requires (N, 4.62).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(2-chlorophenyl)thiazolidin-4-one) 5h

Light yellow colour solid powder, mp 156 0 C, yield 69%; IR (KBr) cm⁻¹: 3055 (C-H stretching, aromatic), 2950, 2830 (C-H stretching, -CH₂- group), 2935, 2860 (C-H stretching, -CH₃), 1675 (C=O stretching, thiazolidinone), 1490 (C=C stretching, aromatic), 1470, 1390 (C-H bending, -CH₃ group), 1440 (C-H bending, -CH₂- group), 730 (C-Cl stretching, chloro); ¹H NMR (400.1 MHz, DMSO): δ_H 2.25 (s, 12H, -CH₃), 3.60 (s, 2H, -CH₂-), 3.82 (s, 4H, -CH₂-S-), 5.94 (s, 2H, -N-CH-S-), 6.76-7.97 (m, 12H, Ar-H); Anal. Calcd for: C₃₅H₃₂Cl₂N₂O₂S₂

(647.68); found (C, 64.87), requires (C, 64.90); found (H, 4.93), requires (H, 4.98); found (N, 4.27), requires (N, 4.33).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(4-hydroxyphenyl) thiazolidin- 4-one) 5i

Yellow colour solid powder, mp 121 0 C, yield 68%; IR (KBr) cm⁻¹: 3420 (O-H stretching, Ar-OH), 3065 (C-H stretching, aromatic), 2940, 2850 (C-H stretching, -CH₂- group), 2920, 2870 (C-H stretching, -CH₃), 1690 (C=O stretching, thiazolidinone), 1505 (C=C stretching, aromatic), 1470, 1380 (C-H bending, -CH₃ group), 1435 (C-H bending, -CH₂- group), 1330 (O-H bending, Ar-OH); ¹H NMR (400.1 MHz, DMSO): δ_H 2.27 (s, 12H, -CH₃), 3.79 (s, 2H, -CH₂-), 3.85 (s, 4H, -CH₂-S-), 5.88 (s, 2H, -N-CH-S-), 6.88-7.69 (m, 12H, Ar-H), 12.86 (s, 2H, OH); Anal. Calcd for: C₃₅H₃₄N₂O₄S₂ (610.79); found (C, 68.77), requires (C, 68.83); found (H, 5.66), requires (H, 5.61); found (N, 4.53), requires (N, 4.59).

3,3'-(4,4'-Methylene bis(2,5-dimethyl-4,1-phenylene))bis(2-(2-nitrophenyl)thiazolidin-4-one) 5j

Brown colour solid powder, mp 132 0 C, yield 71%; IR (KBr) cm⁻¹: 3070 (C-H stretching, aromatic), 2945, 2830 (C-H stretching, -CH₂- group), 2940, 2860 (C-H stretching, -CH₃), 1695 (C=O stretching, thiazolidinone), 1550, 1360 (N=O stretching, Nitro), 1485 (C=C stretching, aromatic), 1475, 1395 (C-H bending, -CH₃ group), 1435 (C-H bending, -CH₂-group); ¹H NMR (400.1 MHz, DMSO): δ_H 2.23 (s, 12H, -CH₃), 3.62 (s, 2H, -CH₂-), 3.86 (s, 4H, -CH₂-S-), 5.92 (s, 2H, -N-CH-S-), 6.75-7.90 (m, 12H, Ar-H); Anal. Calcd for: C₃₅H₃₂N₄O₆S₂ (668.78); found (C, 62.81), requires (C, 62.86); found (H, 4.89), requires (H, 4.82); found (N, 8.44), requires (N, 8.38).

Antimicrobial activity

Methods

All MTCC cultures were collected from Institute of Microbial Technology, Chandigarh. Mueller-Hinton broth was used as nutrient medium to grow and dilute the drug suspension for the test. Inoculum size for test strain was adjusted to 10^8 CFU (Colony Forming Unit) per milliliter by comparing the turbidity. DMSO was used as diluents to get desired concentration of drugs to test upon standard bacterial strains. Serial dilutions were prepared in primary and secondary screening. The control tube containing no antibiotic was immediately sub cultured (before inoculation) by spreading a loopful evenly over a quarter of plate of medium suitable for the growth of the test organism and put for incubation at 37 0 C overnight. The tubes were then incubated overnight. The MICs of compounds were carried out by broth micro-dilution method as described by (Rattan et al., 2000). Antibacterial activity was screened against two gram positive (Staphylococcus aureus MTCC 96, Streptococcus pyogenus MTCC 443) and two gram negative (Escherichia coli MTCC 442, Pseudomonas aeruginosa MTCC 2488) bacteria, norfloxacin, ciprofloxacin and chloramphenicol were used as a standard antibacterial agent. Antifungal activity was screened against three fungal species Candida albicans MTCC 227, S. cervecieaceae MTCC 149 and *Aspergillus clavatus* MTCC 1323, Nystatin-B and gresiofulvin was used as a standard antifungal agent.

Antibacterial activity

The minimum Inhibitory concentrations (MIC) of the tested compounds 5a- j are shown in (Table 1). From the screening data, most of the compounds possessed very good antibacterial activity (MIC, 100-250 µg/ml) against P. aeruginosa and S. aureus; some of them possessed better activity compared norfloxacin, ciprofloxacin and chloramphenicol. to The thiazolidinones 5d, 5h and 5i having 2-OCH₃, 4-Cl and 4-OH substituents showed better activity ($125\mu g/ml$) against E. coli. Compounds **5b** and **5j** having 4-F and 2-NO₂ substituent possessed higher activity (62.5-125 µg/ml) against P. aeruginosa. Compound 5b, 5g and 5j having 4-F, 4-CH₃ and 4-OH. Compounds 5b, 5g and 5j having 4-F, 4-CH₃ and 2-NO₂ substituent possessed higher activity (62.5-125 µg/ml) against S. aureus. Compound 5b and 5f having 4-F and 4-Cl substituents possessed better activity (125 µg/ml) against S. pyogenus.

	Minimum Inhibitory Concentrations (µg/ml)				
Compound	Gram negative bacteria		Gram positive bacteria		
	E. coli	P. aeruginosa	S. aureus	S. pyogenus	
5a	250	500	250	250	
5b	250	62.5	125	125	
5c	250	500	250	250	
5d	125	500	250	500	
5e	250	500	1000	250	
5f	250	500	250	125	
5g	500	125	125	500	
5h	125	250	250	250	
5i	125	125	250	500	
5j	125	250	62.5	250	
Norfloxacin	50	50	50	50	
Ciprofloxacin	50	50	50	50	
Chloramphenicol	50	50	50	50	

Antifungal activity

Most of the compounds possessed very good antifungal activity against *C. albicans*, their MIC values were in the range between 250 and 500 µg/ml. Thiazolidinone **5d** containing 2-OCH₃ substituent possessed good activity of $(250\mu g/ml)$ against *C. albicans*.

Table 2. Antifungal activity of compounds [5a to 5j]

	Minimum Inhibitory Concentrations (µg/ml)				
Compound	Fungus				
-	C. albicans	S. cervecieaceae	A. clavatus		
5a	500	1000	500		
5b	500	500	1000		
5c	500	1000	1000		
5d	250	500	250		
5e	500	1000	1000		
5f	1000	1000	1000		
5g	500	1000	1000		
5h	500	500	500		
5i	500	1000	500		
5j	1000	500	500		
Nystatin-B	100	100	100		
Gresiofulvin	100	100	100		

Compound **5d** containing 2-OCH₃ substituent possessed better activity (250µg/ml) against *A. clavatus*. Whereas remaining compounds possessed weak activity against *C. albicans, S. cervecieaceae* and *A. clavatus*. MIC of compounds **5a- j** is summarized in (Table 2).

Conclusions

A variety of thiazolidinone have been successfully synthesized in excellent appreciable yields and screened in vitro for their antimicrobial activities against both strains of Gram-positive, Gram-negative bacteria and fungal strains. All spectral analysis data confirmed the proposed structures for these newly synthesized compounds.

Acknowledgement

The Authors are thankful to Prof. K. C. Patel, Head of the Department from department of chemistry, V. N. S. G. University, Surat, for providing me all the laboratory facilities for time to time. My special warm thanks to UGC-BSR Research fellowship (SAP) for providing me financially support during my research work. I also thanks to Saif Punjab University, Chandigarh for cooperation in getting the spectral data.

REFERENCES

- Chen, H., Bai, J., Jiao, L., Guo, Z., Yin, Q. and Li X. 2009. Design, microwave-assisted synthesis and HIV-RT inhibitory activity of 2-(2,6-dihalophenyl)-3-(4,6dimethyl-5-(un)substituted-pyrimidin-2-yl) thiazolidin-4ones., Bioorg. Med. Chem., 17 (11): 3980.
- Jaish, L. and Srivastava, S.K. 2001. Synthesis and antimicrobial activity of some new N-Methyl-Piperazinylthiadiazoles and their azetidinones., J. Sci. Ind. Res., 60: 331-335.
- Kamel, M.M., Ali, H.I., Anwar, M.M., Mohamed, N.A. and Soliman, A.M. 2010. Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff's bases, thiazolidinones, benzothiazinones and their Cnucleoside derivatives., Eur. J. Med. Chem., 45 (2): 572-580.
- Kumar, A. and Rajput, C. 2009. Synthesis and antiinflammatory activity of newer quinazolin-4-one derivatives., Eur. J. Med. Chem., 44: 83-90.
- Masoud, G.N., Youssef, A.M., Abdel-Khalek, M.M., Abdel-Wahab, A.E., Ibrahim, M.L. and Aly, A.B. 2013. Design, synthesis and biological evaluation of new 4thiazolidinone derivatives substituted with benzimidazole ring as potential chemotherapeutic agents., Med. Chem. Res., 22: 707-725.
- Mistry, B.M. and Jauhari, S. 2013. Synthesis and in vitro antimicrobial and anti-tubercular evaluation of some quinoline-based azitidinone and thiazolidinone analogues., Med. Chem. Res., 22: 635-646.
- Nandagokula, C., Poojary, B., Vittal, S., Shenoy, S., Shetty, P. and Tangavelu, A. 2013. Synthesis, characterization and biological evaluation of some N-aryl hydrazones and their 2,3-disubstituted-4- thiazolidinone derivatives. *Med. Chem. Res.*, 22: 253-266.

- Patel, D.D., Patel, M.S., Patel, V.S. and Patel, K.C. 2014. Synthesis of benzothiazole derivatives, their Schiff base's and its antiinfective biological activities., *Int. J. Adv. Res.*, 2(3): 1048-1054.
- Patel, N.B., Patel, H.R., Shaikh, F.M. and Rajani, D. 2014. New 4-thiazolidinones from 5-ethyl pyridine-2-ethanol: their antibacterial, antifungal, and antitubercular activity. *Med. Chem. Res.*, 23: 1360-1370.
- Pawar, R.P., Andurkar, N.M. and Vibhute, Y.B. 1998. Studies on synthesis and antibacterial activity of some new Schiff bases, 4-thiazolidinones and 2-azetidinones., *J. Ind. Chem. Soc.*, 76(5): 271-272.
- Rattan, A. 2000. Antimicrobials in laboratory medicine. Churchill B I Livingstone, New Delhi, pp. 85-108.
- Sondhi, S.M., Singh, N., Kumar, A., Lozach, O. and Meijer, L. 2006. Synthesis, anti-inflammtory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff's bases., *Bioorg. Med. Chem.*, 14 (11): 3758-3765.
- Thore, S.N. 1996. Synthesis and antibacterial activity of 1-[N-substituted aminobenzothiazolyl] methylbenzimidazoles., *Asian. J. Chem.*, 8: 222-224.
