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ARTICLE INFO                                        ABSTRACT 
 
 
 

The present investigation was carried out with the purpose of analyzing the 2D-stability analysis 
of bio-porous convection (BPC) in a suspension of motile microorganisms in a gravity inclined 
environment. Due to the extreme complexity of the problem the computational tools like Maple 
and Mathematica were used to get the analytic expressions. It is a well known fact that 
permeability of the porous medium is an important factor in the study of bioconvection. In the 
absence of gravity inclination, the results obtained were quite simple when compared to those of 
the inclined environment. It was found that the criterion for the existence of critical permeability 
was dominated by five parameters viz, cell eccentricity, gravity inclination, average swimming 
velocity, vertical disturbance and fluid velocity. The profiles of critical permeability vs cell 
eccentricity exhibited amazingly interesting features. The results were found to be in excellent 
agreement with the available results for the limiting cases. 
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INTRODUCTION 
 

The phenomenon of bioconvection patterns in suspensions of 
swimming cells have been observed several decades ago. Ever 
since common algae, such as Chlamydomonas nivalis, 
Euglena viridis, Crypthecodinium cohnii and the ciliated 
protozoan Tetrahymena pyriformis were isolated, plumes of 
aggregating cells have been noticed in the culturing flasks. 
Platt (1961) coined the term ‘‘bioconvection’’ to describe the 
phenomenon of pattern formation in shallow suspensions of 
motile micro-organisms at constant temperature, on  par with 
those found in convection experiments. However, this is by no 
means the first documented observation, which goes back              
to at least 1848 e.g., Wager (1911). Other experimental 
investigators are, Loeffer and Mefferd (1952) Nultsch and 
Hoff (1972) Plesset and Winet (1974) and, more recently, 
Kessler, (1984), (1985b), Bees (1996) and Bees and Hill,             
(1998), Levandowsky et al. (1975), Childress et al. (1975) etc. 
Hydrodynamic flows  orient and convect. Bioconvection is 
therefore an exciting, complex, yet experimentally tractable, 
approach for studying the mutual interdependence of physics 
and biology, where the overall phenomenology greatly 
exceeds its primitive components (Kessler, 1989; Kessler and 
Hill, 1997).  
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In most natural aquatic ecosystems, microorganisms are 
advected more or less passively in the large-scale flows 
generated by various imbalances of the environment. In a 
quiescent fluid, however, even their slow motion (typically a 
couple of meters per day) and physical interactions can result 
in considerable spatial rearrangements, and influence the 
dynamics of the system (Mendelson, 1999). Bioconvection is 
one of the oldest documented collective behaviours of 
independent microorganisms (Wager, 1911; Loeffer and 
Mefferd, 1952; Platt, 1961; Plesset and Winet, 1974), arising 
spontaneously in suspensions of diverse swimming 
microorganisms such as bacteria, algae or ciliated protozoa 
(Kessler, 1985; Pedley and Kessler, 1992; Kessler and 
Wojciechowski, 1997). Typically, bioconvective pattern 
formation occurs in shallow suspensions at high cell 
concentration if the density of cells is 5–15% larger than that 
of water and the average direction of the microorganisms’ 
swimming is upward in response to some external stimulus, 
e.g. gravity, light or oxygen-concentration gradient. For 
instance, in non-aerated suspensions of B. subtilis (aerob, soil-
living bacteria) upward swimming is a chemotactic  behaviour 
directed by the oxygen gradient (Taylor et al.,  1999). 
Bioconvection is the name given to pattern formation in 
suspensions of microorganisms, such as bacteria and algae, 
due to up-swimming of the micro-organisms (Pedley and 
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Kessler 1992). Bioconvection has been observed in several 
bacterial species, including aerobic, anaerobic, and 
magnetotactic organisms, as well as in algal and protozoan 
cultures (Kessler and Hill (1997)). All have in common the 
sudden appearance of a pattern when viewed from above. In 
all cases the microorganisms are denser than water and on 
average they swim upwards (although the reasons for up-
swimming may be different for different species). The algae 
(e.g. Chlamydomonas) are approximately 5% denser than 
water, whereas the bacteria are nearly 10% denser than water. 
Microorganisms respond to certain stimuli by tending to swim 
in particular directions. These responses are called taxes, 
examples being gravitaxis, phototaxis, chemotaxis and 
gyrotaxis. Gravitaxis indicates swimming in the opposite sense 
to gravity, phototaxis denotes swimming towards or away 
from light, and chemotaxis corresponds to swimming up 
chemical gradients. Gyrotaxis is swimming directed by the 
balance between the torque due to gravity acting on a bottom-
heavy cell and the torque due to viscous forces arising from 
local shear flows. This paper was concerned with the 2D 
stability analysis of bioconvection in a suspension of motile 
gyrotactic microoganisms in a fluid saturated porous medium 
subject to gravity inclination. The method employed was 
perturbation technique and results were obtained by using the 
computational tools viz.com Maple and Mathematica. The 
effect of gravity inclination on critical permeability was 
studied and the results were studied through graphs. 
 

MATERIALS AND METHODS 
 
In this section the mathematical formulation of the problem 
together with the stability analysis were discussed . 
 
Mathematical fomulation and analysis 
 
The major assumptions utilized in this paper were; (i) the 
porous matrix does not absorb microorganisms. (ii) the 
suspension was dilute.(iii) the medium was an isotropic fluid 
saturated  porous medium of uniform porosity (iv) no 
macroscopic motion of the fluid occurs (v) all the 
microoganisms were swimming vertically upwards. The 
governing equations for a two dimensional unsteady flow in a 
porous medium were obtained by volume averaging the 
equations of Pedley et al., [1988] model, utilizing the volume 
averaging procedure described in Whitaker [1999]. This 
procedure resulted in the replacement of the Laplacian viscous 
terms with the Darcian terms that described viscous resistance 
in a porous medium (Nield and Bejan [1999]).The whole 

system was inclined at an angle  to the vertical. The 
governing equations were : 
the momentum equation in the component form; 
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where aC  was the acceleration coefficient ;   was the angle 

of inclination to the vertical; D is the diffusivity of the 
microorganisms (this assumes that all random motion of the 
microorganisms can be approximated by a diffusive process); 
g was the gravitational acceleration; K was the permeability of 

the porous medium; on was the number density of 

microorganisms in the basic state; p was the excess 

pressure(above hydrostatic); p̂  was the unit vector indicating 

the direction of swimming velocity of microorganisms ; t was 
the time; u, and v were the x-, and y-velocity components 

respectively;V was the velocity vector,(u,v); pWc
ˆ was the 

vector of average swimming velocity of microorganisms 

relative to the fluid( cw  is assumed to be constant); x  and y 

were the Cartesian coordinates(y was the vertical 

coordinate);   was the density difference 0 cell ; 

 was the average volume of microorganisms ;  was the 

dynamic viscosity, assumed to be approximately the same as 

that of water; o was the density of water. 

 
Stability analysis 
 
In order to obtain the stability criterion the perturbations of 
cell concentration, fluid velocity components and the unit 

vector p̂  that indicates the direction of bacterial swimming 

were introduced as follows; 

0
ˆ ˆ[ , , ,  p](t,x,y)=[n , , , ]( , , )n u v n u v n p t x y        …(5) 

Where k̂ was the vector in the vertically upwards y-direction, 
a prime denoted a perturbation quantity and   was the small 
perturbation amplitude After eliminating the pressure , the 
perturbations  (5) were substiiuted in to the governing 
equations which resulted in the following set of linearized 
equations:     
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where 
1V was the vector composed of perturbations of the 

corresponding velocity components,. ( , )u v   Pedley et al. 

[1988] analysed the impact of the gyrotaxes on the direction of 
swimming of microorganisms. Then obtained an equation that 

relates the perturbation of the swimming direction.
1p̂ with 

perturbation of velocity components. For a two dimensional 
problem, the results of Pedley et al. [1988] can be presented as 
 

 )0,(ˆ 1 Bp                                                              ...(9) 

 
Where B was the time scale for the reorientation of 
microorganisms by the gravitational torque against viscous 
resistance. In Pedley and Kessler [1987] this parameter is 
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called the “gyrotactic orientation parameter”, It can be 
expressed as 

gh
B

o



2
                                                                   ..(10) 

where  was the dimensionless constant relating viscous 

torque to the relative angular velocity of the cell and h was the 
displacement of centre of mass of the cell from the centre of 

buoyancy. The components  of vector 
1p̂ in Eq.(9) was 

connected to perturbations of velocity component by the 
following equation:  
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o is the cell eccentricity which is given by the following 

equation. 
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


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Where a and b are the semi-major and semi-minor axes of the 
spheroidal cell respectively. By substituting Eq,(9) into Eq.(8) 

and accounting (11), the following equation for n  was 
obtained.  
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In order to study the stability of the system, the  perturbation 
quantities were introduced in terms of individual fourier by 
Fourier modes: 
 

[ , ]n v  (t,x,y)=[N,U]exp[ ( )]t i lx my                      ..(14) 

 
Again by  substituting Eq.(14) into continuity equation for 

perturbation quantities (7) the following equation for uwas 
obtained. 

Um
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l
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In order to determine the amplitude equations for U and N Eqs 
.(14) and (15) were substituted  into  (6) and (13)  which 
resulted in the following equations;. 
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 In a similar way, we get after simplification,           
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where .222 mlk  Eliminating the amplitudes from 
Eqs.(16) and (17) resulted in the following dispersion equation 
for the growth rate parameter :                                                                                                                                       
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The two roots  for the growth rate parameter     computed from 

Eq.(18)were
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In order to prove that critical permeability exists it was 
absolutely necessary to prove that (i) the system was stable, 
when the permeability of the porous medium is close to zero 
and (ii) the system becomes unstable when the permeability 
was sufficiently large. Accordingly instability appeared only 
when  the real part of  was positive. It was observed that 
since the root with the positive sign in front of the second term 
in Eq.(19) of first root had a greater real part,  analysis was 
concentrated on this root it self.  The Taylor series expansion 
of  this root about the point K=0 was found . By neglecting the 
quadratic and higher order terms in this expansion, the 
following solution (valid only for the small values of 
permeability)  was obtained; 
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From the above Eq. it was observed that for K=0,   had a 

negative real part. 2k D  which was independent of  . This 
suggested that for sufficiently small values of permeability the 
system was stable. Therefore in order to prove that the system 
becomes unstable with the increase K, it was absolutely 
necessary to show that the real part of  would be positive. 
Suppose m=o (which corresponded to the case of no vertical 
disturbances). In this case the root of the Eq. (20) with the 
greater real part was found to be   
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The upper limit of the critical permeability is computed by 
solving the equation (21) for  =0 

 
upper
critK =

         


D 

B n


g    W
c

( )cos  ( )


1
   …(22)  

     
The above equation clearly proved and predicted that the  
existence of critical permeability and further  it was observed 
that the  upper limit of the observed that the above solution 
coincides with that of uninclined case (Kuznetsov (2002)) in 

the limit  =0. The critical permeability was the minimum 
value of K for all allowable wavenumbers and .critical 
permeability was more when compared to the uninclined case 

(  =0).   
 
Estimation of the value of critical permeability 
 
For this purpose the linearized, Eq. (20) was considered and 
from the  of Re( )=0,   was computed for small values of 
criticalpermeability;
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                                                                                           ..(.23) 

solving this equation for K̂  results in 

K̂ 
D ( )m2 l2

2

 B n


g l    W
c
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
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

( )cos  l3 ( )cos      ))

 

                                                                                            ..(24) 

 Investigation of function K̂  (l, m, )  for extremum gives 

two equations which are identical: 
ˆ ˆ
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K K
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                                                                                            ..(25) 
one of the feasible solution of (25) was;  
m= 
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The full expression  for m was  found to be extremely lengthy 
and hence a part of it was presented.  Substituting the positive 

root of m in (24) resulted in the expression for K̂ .The 
computation was done through Mathematica. Because of its 
extreme length the result was not presented here.   

critK = ikjjl2+ikjjcosd l2sind
-
1

2
-ikjjcosd2l2sind2

+
6l2ao

1+ ao
-

2l2 sind ao

sind + sind ao
+H421 3H- cosd2 l4 - l4 sind2+ 2cosd2l4 ao+ 3cosd2l4 ao2
+4l4 sind2ao

2LL‘HsindH1+ aoLH- 432l6sind3 ao3   …..(27) 
This expression for critical permeability was valid for the 

restricted values of 0 and  .The following points were 

observed in the present investigation.: 

(i) 
ˆ ˆ

0
K K

l m

 
 

 
results in a biquadratic equation when 

0  ,and in such case, the solutions for l and m found by 

using the computational Mathematica. When  =0, the 
solutions were extremely simple and were in excellent 
agreement with those of Kuznetsov & Avramenko (2002). 
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(ii) The computation of the critical permeability was extremely 

complex in the sense that critK  strongly depends on these 

parameters viz., m, 0 and  . The results were presented 

through graphs (Figures 1 to 9) 
 

 

    Fig1 dependence of K
crit

on the 


when  10o
  

 
Fig2 dependence of K

crit
on the 


when  20o

 

 
Fig3 dependence K

crit
on the 


when  30o

 

 

 
Fig4 dependence of K

crit
on the 


when  40o

 

 
Fig5 dependence of K

crit
on the 


when  45o

 

 
Fig6 dependence of K

crit
on the 


when  50o

 

 

 
Fig7 dependence of K

crit
on the 


when  60o

 

 
Fig8 dependence of K

crit
on the 


when  70o
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Fig9 dependence of K

crit
on the 


when  80o

 

 

RESULTS AND DISCUSSION 
 

A glance at Eq. (12) revealed that 0  would  change between 

zero and unity. When  =0, and 0 1/ 3   , the function K̂  

(l, m,  ) defined by Eq. (24) did not possess an extremum. In 
that case the minimum value clearly occurred at the boundary 
of the domain, at m=0, which physically corresponded to the 
case of no vertical disturbances. In the absence of 

inclination(  =0) the present investigation associated with  
bioconvection in a porous medium subject to gravity 
inclination yielded the expressions for the critical permeability 
as: 

critK   

2

1
0 1 / 3

(1 )

8
1 / 3 1

(1 )

o

o o c

o
o

o o c

D
for

Bn gW

D
for

Bn gW




 

 


 

 
 

 
 

      ……(26) 

Which were exactly as those of Kuznetsov & Avramenko 
(2002). Thus the results of the present investigations were in 
excellent agreement with those of available  theoretical  
results. 

But when  0   the corresponding expression was found to 
be extremely lengthy and hence the predictions could be made 
only with the numerical computations. The one of the 
important observations was the extremely complex nature of 
the different  resulting equations. In the absence of the 

inclination the demarcation value of  0 was  1/3 and the 

critK was obtained under the assumption that the Taylor series 

expansion for  contained only the linear terms.. This was 
clearly a good approximation when the diffusivity of cells D 
was small.The present investigation predicted the following 
important results: 

(i) the critical permeability critK  had a  strong dependence on 

the  cell eccentricity 0 and gravity inclination  . Table1 

clearly predicted the range of 0 for m=o and m 0  

corresponding to each value of  ,  It was observed that for all 

values of   the maximum values of critK  were well with in 

the value 2. 
(ii) the figures 1-9 predicted that the strong dependency of 

critK  on 0 and  . 

(iii) in all cases (m=0) critK  monotonically increases as 

0 increases from 0 to unity. However for values  m 0  only 

for very small values of  (0 10)   . However for large 

values   the dependence of an 0  was highly non-linear. 

(iv) When 0 increased to unity the microoganisms became 

more elongated. 

(v) When the permeability was in the range of 0 critK K   

, the system was stable. This suggested that the system with 
elongated microoganisms had a wider range of stability with 

respect K and   than the system with spherical 
microoganisms . 
(vi) another important finding was when the shape of the 

microoganisms is closed to spherical ( 0  0.33) the most 

unstable disturbance were those with 0 vertical wave number 

and uninclined environment (m=0,  =0). This behaviour 

changes rapidly with  (figures 1-9). 
(vii) suppose the microoganisms were sufficiently elongated 
( 0 .3 3 1o  ) the most unstable disturbances were those 

with non-zero vertical wavenumber (m 0 ; =0 and  0 ). 
(viii) in fact physically vertical disturbances were important 
for the suspension of elongated particles because the only 
vertical shear could orient the direction of swimming of 
elongated microoganisms away from vertical direction in the 
presence or absence of gravity inclination. This was the 
mechanism of gyrotaxis that would make the system unstable. 
It was observed that the gravity inclination played the 
dominant role on the mechanism of gyrotaxis associated with 
bioconvection in a porous medium in an inclined environment.  
(ix) actually Pedley et al.,(1988) observed similar observations 
in the case of  bioconvection in a fluid medium. But the 
present investigation very clearly predicted similar 
conclusions in the case   bioconvection of in a porous medium 
in the   presence and absence of gravity inclination. Therefore 
finally it was concluded that there existed (a) important 
similarities between bioconvection in porous and fluid media 
and (b) many dissimilarities between bioconvection in inclined 
and uninclined environments. 
 

REFERENCES 
 
Bees, M. A. (1996). Non-linear pattern generation in 

suspensions of swimming micro-organisms. PhD thesis, 
University of Leeds 

Bees, M A & Hill, N A (1998) Linear bioconvection in a 
suspension of randomly-swimming, gyrotactic micro-
organisms. Phys Fluids 10, 1864–1881 

Childress, S, Levandowsky, M & Spiegel, E A 1975 
Kessler, J. O. (1984a). Algal Cell Growth, Modification and 

Harvesting. U.S. Patent No. 4438591. 
Kessler, J. O. (1984b). Gyrotactic buoyant convection and 

spontaneous pattern formation in algal cell cultures. In 
Nonequilibrium Cooperative Phenomena in Physics and 
Related Fields (ed. M. G. Velarde), pp. 241–248. New 
York: Plenum Press. 

Kessler, J. O. (1985). “Co-operative and concentrative 
phenomena of swimming microorganisms,” Contemp. 
Phys. 26, 147 

Kessler, J.O., (1985) J. Fluid Mech. 123: 191-205, 

209                  International Journal of Current Research, Vol. 3, Issue, 7, pp.204-210, July, 2011 



Kessler, J. O. (1985a). Co-operative and concentrative 
phenomena of swimming micro-organisms. Contemp. 
Phys. 26, 147–166. 

Kessler, J. O. (1985b). Hydrodynamic focussing of motile 
algal cells. Nature 313, 218–220. 

Kessler, J. O. (1986). Individual and collective dynamics of 
swimming cells. J. Fluid Mech. 173, 191-205. 

Kessler, J. O. (1989). Path and pattern – the mutual dynamics 
of swimming cells and their environment. Comments 
Theor. Biol. 1, 85-108. 

Kessler, J O & Hill, N A (1997) Complementarity in the 
dynamics of swimming micro-organisms. In The physics 
of biological systems, Flyvberg, H et al. (eds.), 324–340, 
Springer Lecture Notes in Physics 480, Berlin 

Kessler, J O & Wojciechowski, M F (1997) 
Collective behavior and dynamics of swimming bacteria. In 

“Bacteria as multicellular organisms”, Shapiro, J A & 
Dworkin, M (eds.), 417, 

Kuznetsov A.V Int. Commn. Heat Mass Transfer 29,  No.2, 
pp, 175-184 (2002) 

Kuznetsov, A V & Avramenko, A A (2002) A 2D analysis of 
stability of bioconvection in a fluid 

saturated porous medium-estimation of the critical 
permeability value. Int Commun Heat Mass Transfer 29, 
175–184. 

Levandowsky, M. Childress, W. S Spiegel, E. A.  and Hunter, 
S. H. (1975). “A mathematical model of pattern formation 
by swimming microorganisms,” J. Protozool 22, 296 

Loeffer J. B. and Mefferd, R. B. (1952). Concerning pattern 
formation by free swimming microorganisms,’’ Am. Nat. 
86, 325. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mendelson, N.H. (1999) Bacillus subtilis macrofibres, 
colonies, and bioconvection patterns use different 
strategies to achieve multicellular organization. Environ 
Microbiol 1: 420–423 

Pedley T. J. and Kessler, J. O.  (1987). The orientation of 
spheroidal microorganisms swimming in a flow field,” 
Proc. R. Soc. London, Ser. B 231, 47. 

Pedley T. J. and Kessler, J. O.  (1992). Hydrodynamic 
phenomena in suspensions of swimming micro-
organisms. A.Rev. Fluid Mech. 24, 313–358. 

Pedley, T J, Hill, N A & Kessler, J O (1988) The growth of 
bioconvection patterns in a uniform suspension of 
gyrotactic microorganisms. J Fluid Mech, 223–238195 

Platt, J R (1961) “Bioconvection patterns” in cultures of 
freeswimming organisms. Science 133, 1766–1767 

Plesset, M. S. and Winet, H. (1974). 443. Bioconvection 
patterns in swimming microorganism cultures as an 
example of Rayleigh-Taylor instability. Nature 248, 441- 

Taylor, B.L., Zhulin, I.B., and Johnson, M.S. (1999) 
Aerotaxisand other energy-sensing behavior in bacteria. 
Annu Rev Microbiol 53: 103–128. 

Wager H (1911) on the effect of gravity upon the movements 
and aggregation of Euglena viridis, Ehrb., and other 
micro-organisms. Phil Trans R Soc London B 201, 333–
390. 

Whitaker,S The Method of Volume Averaging, Kluwer, 
Dordrccht (1999). 

 
 
 
 
 

******* 

210                  International Journal of Current Research, Vol. 3, Issue, 7, pp.204-210, July, 2011 


