RESEARCH ARTICLE

A STUDY TO SEE THE RELATIONSHIP OF DEMOGRAPHICSAND HYPERTENSION AMONG KASHMIRI POPULATION

1Dr. Shabir Dangroo, *2Dr. Sajad Hamid, 3Dr. Muhammad Salim Khan and 4Dr. Shahnawaz Hamid
${ }^{1}$ Department of Community Medicine, SKIMS Medical College, Bemina ${ }^{2}$ SKIMS Medical College, ${ }^{3}$ Community Medicine, GMC Srinagar
${ }^{4}$ Post- Graduate SKIMS Soura

ARTICLEINFO

Article History:

Received $18^{\text {th }}$ November, 2013
Received in revised form
$10^{\text {th }}$ December, 2013
Accepted $26^{\text {th }}$ January, 2014
Published online $21^{\text {st }}$ February, 2014
Key words:
District Pulwama,
Hypertension,
Prevalence.

Abstract

A community based cross-sectional descriptive study was carried out to assess the prevalence of hypertension with respect to demographic profile of kashmiri population. The study was taken from Oct. 2012 to Sept. 2013 in District Pulwama. The sampling method used was multistage, 10% villages from each block were taken for study using population proportion to size method (PPS). From each selected village 5\% households were taken by systemic random method for the study. Minimum sample required was calculated. We have taken a sample size of 2100 , out of which 1007 participants were males and 1093 participants were females. In each household, inmates of age 18 years and above were screened for hypertension. Those found fulfilling the inclusion criteria laid down for hypertension (JNC-VII 2003) were subjected to pretested questionnaire and two blood pressure readings were taken. The study population was Screened and two blood pressure readings 10 minutes apart after the subject was resting for at least 5 minutes in a sitting position, by mercury sphygmomanometer which was standardized; The first and the fifth Korotkoffs sounds were taken as indicative of the systolic and diastolic blood pressure respectively. The average of the two readings of systolic and diastolic blood pressure was used as the blood pressure of the participant. In results; The overall prevalence was $14.56 \%, 13.8 \%$ in males and 15.3% in females. $4.84 \%, 8.5 \%$ and 6.8% females were in pre-hypertension, stage-I and stage-II hypertension respectively. Among males 4.76% in prehypertension, 6.5% in stage-I and 7.3% were with hypertension. The distribution of hypertension, among pre-hypertensives, 52.47% were females and 47.52% were males. Among hypertensive subjects, 54.47% were females and 45.42% were males. Widowed study subjects had higher tendency to have hypertension 32% in males and 30.89% in females. Hypertension was more observed in illiterates than educated population being 15.47% in illiterates and goes on decreasing as educational status increases. Lowest in postgraduates 7.14%.Hypertension was more in housewives 15.6% followed by farmers 14.1% and skilled workers 13%.

Copyright © 2014 Dr. Shabir Dangroo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Almost 1 billion people worldwide have high blood pressure, and over half a billion more will have this silent killer by 2025. It translates into millions of deaths from heart disease alone. The dangers go well beyond the heart, High blood pressure is a leading cause of strokes and kidney failure. It also plays a role in blindness and even dementia. It has been estimated that hypertension accounts for 6% of deaths worldwide (Dr Jan Ostergren 2009). Cardiovascular diseases caused 2.3 million deaths in India in the year 1990; this is projected to double by the year 2020 (Ghattargi 2004). Hypertension is directly responsible for 57% of all stroke deaths and 24% of all coronary heart disease deaths in India. There is a strong

[^0]correlation between changing lifestyle factors and increase in hypertension in India. The Nature of genetic contribution and gene environment interaction in accelerating the hypertension epidemic in India needs more studies. Pooling of epidemiological studies shows that hypertension is present in 25% urban and 10% rural subjects in India. At an underestimate, there are 31.5 million hypertensives in rural and 34 million in urban populations. A total of 70% of these would be Stage I hypertension (systolic BP 140-159 and/or diastolic BP $90-99 \mathrm{mmHg}$). Recent reports show that borderline hypertension (systolic BP 130-139 and/or diastolic BP 85-89 mmHg) and Stage I hypertension carry a significant cardiovascular risk and there is a need to reduce this blood pressure (hypertension-II 2007). Control of the cardiovascular diseases will require modification of risk factors that have two characteristics. First, the risk factor must have high attributable risk or high prevalence or both, and secondly, most or all of the
risks must be reversible cost-effectively. Blood pressure is directly associated with risks of several types of cardiovascular diseases, and the associations of BP with disease risk are continuous with large proportions of most populations having non-optimal blood pressure values. Moreover, most or all BPrelated risks appear to be reversible within a few years with inexpensive interventions. In India cardiovascular diseases cause 1.5 million deaths annually. Hypertension is directly responsible for 57% of all stroke deaths and 24% of all coronary heart disease deaths. This fact is important because hypertension is a controllable disease and a 2 mm Hg population wide decrease in BP can prevent 151,000 stroke and 153,000 coronary heart disease deaths. This article summarizes epidemiology of hypertension in India and reports on a study to evaluate trends in hypertension in an Indian urban population and its proximate determinants (Rajeev Gupta and Gupta 2009).

Hypertension is one of the most important modifiable risk factors for CHD in western and Asian population Studies from India and Bangladesh have shown an increasing trend in the prevalence of hypertension Community surveys have documented that in a period of three to six decades, prevalence of hypertension has increased by about 30 times among urban dwellers and by about 10 times among the rural inhabitants. Prevalence of hypertension is 20% worldwide, $27-30 \%$ in India. Average systolic blood pressure is higher for men than for women during early adulthood, although among older individuals the age-related rate of rise is steeper for women. Consequently, among individuals age 60 and older, systolic blood pressures of women are higher than those of men. Among adults, diastolic blood pressure also increases progressively with age until 55 years, after which it tends to decrease. The consequence is a widening of pulse pressure (the difference between systolic and diastolic blood pressure) beyond age 60 . Both environmental and genetic factors may contribute to variations of blood pressure and hypertension prevalence. Hypertension is present in all populations except for a small number of individuals living in primitive, culturally isolated societies. Studies of societies undergoing "acculturation" and studies of migrants from a less to a more urbanized setting indicate a profound environmental contribution to blood pressure. Additional environmental factors that may contribute to hypertension include alcohol consumption, psychosocial stress, and low levels of physical activity. Hypertension represents a polygenic disorder in which a single gene or combination of genes act in concert with environmental exposures to contribute effect on blood pressure ${ }^{5}$. The earlier studies from the Valley, showing the prevalence of hypertension may not hold true now, as such this study was undertaken, more so to look for any newer risk factors other than already taken. It was also seen, that rule of halves, doesn't hold true in presence of modern health facilities and literacy. Prevalence of hypertension was assessed in District Pulwama and is about 32 kilometres from Srinager city.

MATERIALS AND METHODS

A community based cross-sectional descriptive study was carried out to assess the prevalence of hypertension and
evaluate the risk factors like, socio-demographic \& life style. The study was taken from Oct. 2012 to sep. 2013.

Selection of population

District Pulwama was undertaken for the study, the total population of District Pulwama is $4,57,883$, approximatly 56% of this population comprise 18 years and above population which is $2,56,414$ (RCH Action Plan 2007).

Sampling method

The sampling method used was multistage, list of all villages of each block was obtained from respective block headquarters (BMO's office) with population of each village and a cumulative population list was calculated for each Block. 10\% villages from each block were taken for study using population proportion to size method (PPS). From each selected village 5% households were taken by systemic random method for the study. Minimum sample required was calculated using formula, $\mathrm{n}=\mathrm{Z}^{2} \times \mathrm{P}(1-\mathrm{P}) / \mathrm{d}^{2}$, where, $\mathrm{Z}=1.96$ (with 95% confidence interval), $\mathrm{P}=13 \%$ (prevalence), d is (precision) $\pm 5 \%=5 \%$ (0.05), which makes 774 participants. We have taken a sample size of 2100 , out of which 1007 participants were males and 1093 participants were females. In each household, inmates of age 18 years and above were screened for hypertension. Those found fulfilling the inclusion criteria laid down for hypertension (JNC-VII 2003) were subjected to pretested questionnaire about socio-demographic factors and life style. Study population (2100 participants) comprised both males (1007 participants) and females (1093 participants) of age 18 years and above. The study population with hypertension and pre-hypertension (407 participants out of which 101 are pre-hypertensive) was screened for sociodemographic factors like age, sex, marital status, total income and two blood pressure readings 10 minutes apart, by mercury sphygmomanometer which was standardised. Both blood pressure measurements were taken after the subject was resting for at least 5 minutes in a sitting position. Blood pressure measurements were obtained on the right arm using a cuff of appropriate size and with instrument at the level of the heart. The cuff pressure was inflated 30 mmHg above the level at which the radial pulse disappears, then deflated slowly at the rate of 2 mmHg per second and the readings recorded to the nearest 2 mmHg . The first and the fifth Korotkoff sounds were taken as indicative of the systolic and diastolic blood pressure respectively. The average of the two readings of systolic and diastolic blood pressure was used as the blood pressure of the participant.

Definition

Blood pressure is pressure exerted on the vessel wall, Normal systolic $<120 \mathrm{mmHg}$ and diastolic $<80 \mathrm{mmHg}$. Pre-hypertension $120-139 \mathrm{mmHg}$ systolic and $80-89 \mathrm{mmHg}$ diastolic. Stage-I Hypertension $140-159 \mathrm{mmHg}$ systolic and $90-99 \mathrm{mmHg}$ diastolic. Stage-II hypertension systolic $\geq 160 \mathrm{mmHg}$ and diastolic $\geq 100 \mathrm{mmHg}$ (Aram et al., 2003).

JNC-VII classification	Systolic blood pressure	Diastolic blood pressure
Normal	$\leq 120 \mathrm{mmHg}$	$\leq 80 \mathrm{mmHg}$
Pre-hypertension	$120-139 \mathrm{mmHg}$	$80-89 \mathrm{mmHg}$
Stage-1	$140-159 \mathrm{mmHg}$	$90-99 \mathrm{mmHg}$
Stage-2	$\geq 160 \mathrm{mmHg}$	$\geq 100 \mathrm{mmHg}$

Observations

Population characteristics of the study

	Population characteristics (\%)
Total population screened	2100 participants
Males	$1007(48 \%)$
Females	$1093(52 \%)$
Overall prevalence of hypertension	$306(14.56 \%)$
Prevalence in males	$139(13.8 \%)$
Prevalence in females	$167(15.3 \%)$
Prevalence in married males	$104(12.27 \%)$
Prevalence in widowed males	$25(32 \%)$
Prevalence in married females	$127(14.71 \%)$
Prevalence in widowed females	$30(30.89 \%)$
Prevalence in illiterates	$252(15.47 \%)$
Prevalence in primary pass	$19(13.38 \%)$
Prevalence in middle pass	$7(11.47 \%)$
Prevalence in matric pass	$20(10.98 \%)$
Prevalence in intermediate	$7(9.58 \%)$
Prevalence in postgraduate	$1(7.14 \%)$
Mean age males	64 ± 2.36 years range
Mean age females	53 ± 2.34 years

The total population screened in District Pulwama (2100), 1007 males and 1093 females. The males (1007), 820(81.42\%) were with normal blood pressure, 48(4.76\%) pre-hypertensive and $139(13.8 \%)$ with hypertension. In females (1093), 873(79.87\%) were with normal blood pressure, 53(4.84\%) prehypertensive and $167(15.3 \%)$ with hypertension. The overall prevalence of hypertension was $14.56 \%, 13.8 \%$ in males and 15.3% in females. Stage-1 hypertension was observed more in females (8.5%) than males (6.5%), while as stage-II hypertension was more in males (7.3\%) as compered to females (6.5%). The distribution of pre-hypertension among sample population who fulfilled the criteria of JNC-VII was $53(52.47 \%)$ in females and $48(47.52 \%)$ males. Likewise hypertension 167(54.47\%) in females and 139(45.42\%) in males. The distribution of stage-I hypertension was more among females (58.88%) as compared to males (50%), while the distribution of stage-II hypertension was more in males (50%) as compared to females (41.13%).

Table 1. Distribution of hypertension (stage-I+stage-II), as per JNC-7, in the sample screened (2100 participants), males (1007 participants) and females (1093 participants)

SEX	JNC-7 Classification					(Stage-I + Stage-II) Hypertension
	n	Normal BP	Pre-Hyper- tension	Stage-I	Stage-II	
Female	1093	873	53	93	74	167
		(79.87)	(4.84)	(8.5)	(6.8)	(15.3)
Male	1007	820	48	65	139	
		(81.42)	(4.76)	(6.5)	(7.3)	(13.8)
Total	2100	1693	101	158	306	
		(80.61)	(4.80)	(7.52)	(7.04)	(14.56)

Table 2. Distribution of hypertension among sample population who fulfilled the criteria (JNC-VII), (407), as per their gender

SEX	JNC-7 CLASSIFICATION				
	TOTAL	pre-hypertension	stage-I	stage-II	(Stage-I+stage-II) Hypertension
Female	220	53	93	74	167
Male	(54.05)	(52.47)	(58.88)	(50)	(54.47)
	187	48	65	74	139
	(45.94)	(47.52)	(41.13)	(50)	(45.42)
Total	407	101	158	148	
$\chi^{2}=2.551, \quad \mathrm{df}=, \operatorname{sig}=0.279$	(100)	(100)	(100)	(100)	306
					(100)

Table 3. Prevalence of blood pressure as per marital status

Sex	marital status	N	Normo tensive	JNC-7 Classific Pre-Hyper tension	Stage-I	Stage-II	(Stage-I+stage-II) HTN
Male							
	Married	847	$\begin{gathered} 728 \text { (85.97) } \\ 56 \\ (68.29) \end{gathered}$	$\begin{gathered} 15 \\ (1.77) \\ 16 \end{gathered}$	$\begin{gathered} 50 \\ (5.9) \\ 6 \end{gathered}$	54 (6.37)	$\begin{gathered} 104 \\ (12.27) \end{gathered}$
	Un-married	82	36 (46.15)	$\begin{gathered} (19.51) \\ 17 \end{gathered}$	$\begin{gathered} (7.31) \\ 15 \end{gathered}$	$\begin{gathered} 4 \\ (4.87) \end{gathered}$	$\begin{gathered} 10 \\ (12.19) \end{gathered}$
	Widowed	78		(21.79)	(19.23)	$\begin{gathered} 10 \\ (12.82) \end{gathered}$	$\begin{gathered} 25 \\ (32.0) \end{gathered}$
	Total	1007	820	48	71	68	139
Females	Married	863	708 (82.03)	$\begin{gathered} 28(3.24) \\ 15(14.01) \end{gathered}$	$\begin{aligned} & 76(8.80) \\ & 02(1.86) \end{aligned}$	$\begin{gathered} 51(5.90) \\ 0 \end{gathered}$	127(14.71)
	Un-married	107	90(84.11)	10(8.13)	15(12.19)	23(18.67)	02(1.68)
	Widowed	123	75(60.97)				38(30.89)
	Total	1093	873	53	93	74	167

$\chi^{2}=139.443, \quad \mathrm{df}=6, \quad$ sig $=0.000($ males $) ; \chi^{2}=73.752, \quad \mathrm{df}=6, \quad$ sig $=0.000($ females $) \quad$.

Out of 847 married males, 728(85.97\%) were with normal blood pressure, 15(1.77\%) pre-hypertension and 104(12.27\%) with hypertension. The hypertensives are more in stage-II (6.37%) as compared to stag-I (5.9%).Out of 82 un-married males, $56(88.29 \%)$ were with normal blood pressure, $16(19.51 \%)$ pre-hypertensive and $10(12.19 \%)$ in hypertension. Hypertensive's are more in stage-I In 78 widowed males, $36(46.15 \%)$ were with normal blood pressure, 17(21.79\%) prehypertensives and $25(32 \%)$ with hypertension. Stress may be the cause of being more hypertensives in widows. Out of 863 married females, 708(82.03\%) with normal blood pressure, $28(3.24 \%)$ pre-hypertensives and $127(14.71 \%)$ hypertensives. Out of 107 un-married females, $90(84.11 \%$) are with normal blood pressure, 15(14.01\%) pre-hypertension and 02(1.86\%) are hypertensives.Out of 123 widowed females 75(60.97\%) were with normal blood pressure, $10(8.13 \%$) pre-hypertensives and $38(30.89 \%)$ with hypertension.
hypertensive. In 174, 46-59 age group, 16(9.19) were hypertensive. In 144, ≥ 60 age group, 104(72.22) were hypertensive.
Females: Out of 441, in the age group of 18-31, 15(3.40) were hypertensive. In the age group of $32-45,36(10.87)$ were hypertensive. Out of 185, 46-59 age group, 39(21.04) were hypertensive. Also in the age group of ≥ 60, study subjects 136 , 77 (56.61) were hypertensive.

Out of 139 males, 5(35.7) in the age of 18-31, 14(51.8) in the age group of $32-45,16(69.45)$ in age group of $45-59$ and 104(84.6) above were hypertensive .Out 167 females, 15(51.7) in age group of 18-31, 36(69.2) in 32-45, 39(84.7) in 45-59 and $77(52.8)$ are 60 years and above. Increases with increase in age. Out 1628 illiterate study subjects, $1346(82.67 \%)$ were with normal blood pressure, $30(1.84 \%)$ pre-hypertensives and 252(15.47\%) hypertensives. In 142 primary pass. 107(75.35\%)

Table 4. Distribution of blood pressure as per marital status

MARITAL STATUS	JNC-7 CLASSIFICATION				(Stage-I+stage-II) HTN
	TOTAL	pre-hypertension	stage-I	stage-II	
Married	271	$\begin{gathered} 43 \\ (42.57) \end{gathered}$	$\begin{gathered} 126 \\ (79.74) \end{gathered}$	$\begin{gathered} 105 \\ (70.94) \end{gathered}$	$\begin{gathered} 231 \\ (75.49) \end{gathered}$
Unmarried*	$\begin{gathered} (66.58) \\ 43 \end{gathered}$	$\begin{gathered} 31 \\ (30.69) \end{gathered}$	$\begin{gathered} 2 \\ (1.26) \end{gathered}$	$\begin{gathered} 10 \\ (6.75) \end{gathered}$	$\begin{gathered} 12 \\ (3.92) \end{gathered}$
Widowed	$\begin{gathered} (10.56) \\ 93 \\ (86.91) \end{gathered}$	$\begin{gathered} 27 \\ (26.73) \end{gathered}$	$\begin{gathered} 30 \\ (18.98) \end{gathered}$	$\begin{gathered} 33 \\ (22.29) \end{gathered}$	$\begin{gathered} 63 \\ (20.58) \end{gathered}$
Total	$\begin{gathered} 407 \\ (100) \end{gathered}$	$\begin{gathered} 101 \\ (100) \end{gathered}$	$\begin{gathered} 158 \\ (100) \end{gathered}$	$\begin{gathered} 148 \\ (100) \end{gathered}$	$\begin{gathered} 306 \\ (100) \end{gathered}$

Table 5. Prevalence of blood pressure as per age groups

SEX				JNC-7 CLASSIFICATION						
				n	NORMAL BP	pre-h	ypertension	stage-I	stage-II	HTN (stage-I+stage-II)
Male	AGE	GROUPS	18-31	400	386 (96.5)	9	(2.25)	4 (1.0)	1(0.25)	5 (1.25)
			32-45	289	262(90.65)	13	(4.49)	1(0.34)	13(4.49)	14(4.84)
			46-59	174	151(86.78)	7	(4.02)	9(5.17)	7 (4.02)	16(9.19)
			$>=60$	144	21 (14.58)	19	(13.19)	51(35.41)	53(36.80)	104(72.22)
Female	AGE	Total GROUPS	18-31	$\begin{gathered} 1007 \\ 441 \end{gathered}$	$\begin{gathered} 820 \\ 412(93.42) \end{gathered}$	14	${ }^{48}$	$\begin{aligned} & 65 \\ & 12 \end{aligned}$	$\begin{array}{ll} & 74 \\ 3 & (0.68) \end{array}$	$\begin{gathered} 139 \\ 15 \quad(3.40) \end{gathered}$
			32-45	331	279(84.29)	16	(4.83)	23 (6.94)	13 (3.92)	36 (10.87)
			46-59	185	139(75.13)	7	(3.78)	25(13.51)	14 (7.56)	39 (21.04)
			$>=60$	136	43 (31.61)	16	(11.76)	33(24.26)	44(32.35)	77 (56.61)
		Total		1093	873		53	93	74	167

Out of 101 pre-hypertensives, 43(42.57\%) married, $31(30.61 \%)$ un-married and 27(26.73\%) were widowed. Out of 306 hypertensives, 231(75.49\%) married, 12(3.92\%) unmarried and 63(20.58\%) were widowed.
Males: Out of 400, in 13-30 age group, 5(1.25) were hypertensive. In 289, in 32-45 age group 14(4.84) were
were with normal BP, $16(11.26 \%)$ pre-hypertensive and $19(13.38 \%)$ are hypertensive. Out of 61 middle pass, $38(62.29 \%)$ are with normal BP, $16(26.22 \%)$ pre-hypertensive and $7(11.47 \%)$ with hypertension.In 182 matric pass, $147(80.76 \%)$ with normal BP, 15(8.24\%) pre-hypertensives and $20(10.98 \%)$ hypertension. In 73 intermediates, 54(73.97\%)

Table 7. Distribution of blood pressure as per educational status

EDUCATIONAL STATUS	N	$\begin{aligned} & \text { Normal } \\ & \text { BP } \end{aligned}$	JNC-7 Classification			
			Pre-hypertension	Stage-I	Stage-II	Hypertension Stage-I+stage-II
Illiterate	1628	$\begin{gathered} \hline 1346 \\ (82.67) \end{gathered}$	$\begin{gathered} 30 \\ (1.84) \end{gathered}$	$\begin{gathered} 136 \\ (8.35) \end{gathered}$	$\begin{gathered} \hline 116 \\ (7.12) \end{gathered}$	$\begin{gathered} 252 \\ (15.47) \end{gathered}$
primary pass	142	$\begin{gathered} 107 \\ (75.35) \end{gathered}$	$\begin{gathered} 16 \\ (11.26) \end{gathered}$	$\begin{gathered} 4 \\ (2.81) \end{gathered}$	$\begin{gathered} 15 \\ (10.56) \end{gathered}$	$\begin{gathered} 19 \\ (13.38) \end{gathered}$
middle pass	61	$\begin{gathered} 38 \\ (62.29) \end{gathered}$	$\begin{gathered} 16 \\ (26.22) \end{gathered}$	$\begin{gathered} 2 \\ (3.61) \end{gathered}$	$\begin{gathered} 5 \\ (8.19) \end{gathered}$	$\begin{gathered} 7 \\ (11.47) \end{gathered}$
matric pass	182	$\begin{gathered} 147 \\ (80.76) \end{gathered}$	$\begin{gathered} 15 \\ (8.24) \end{gathered}$	$\begin{gathered} 12 \\ (6.59) \end{gathered}$	$\begin{gathered} 8 \\ (4.39) \end{gathered}$	$\begin{gathered} 20 \\ (10.98) \end{gathered}$
intermediate	73	$\begin{gathered} 54 \\ (73.97) \end{gathered}$	$\begin{gathered} 12 \\ (16.43) \end{gathered}$	$\begin{gathered} 4 \\ (5.47) \end{gathered}$	$\begin{gathered} 3 \\ (4.10) \end{gathered}$	$\begin{gathered} 7 \\ (9.58) \end{gathered}$
postgraduate	14	$\begin{gathered} 1 \\ (7.14) \end{gathered}$	$\begin{gathered} 12 \\ (85.71) \end{gathered}$	0	$\begin{gathered} 1 \\ (7.14) \end{gathered}$	$\begin{gathered} 1 \\ (7.14) \end{gathered}$
Total	2100	1693	101	158	148	306

Table 8. Distribution of blood pressure as per educational status

Educational status	JNC-7 Classification					Total
	Pre-hypertension	Stage-I	Stage-II	Hype	rtension	
Illiterate	30 (29.70)	136(8.35)	116(7.12)	252	(82.35)	282(69.28)
Primary pass	16 (15.84)	4(2.81)	15(10.56)	19	(6.20)	35 (8.59)
Middle pass	16 (15.84)	2(3.61)	5(8.19)	7	(2.28)	23 (5.65)
Matric pass	15 (14.85)	12(6.59)	8(4.39)	20	(6.53)	35 (8.59)
Intermediate	12 (11.88)	4(5.47)	3(4.10)		(2.28)	19 (4.66)
Postgraduate	12 (11.88)	0	1(7.14)		(0.32)	13 (3.19)
Total	101 (100)	158	148	306	(100)	407 (100)

Table 9. Prevalence of hypertension as per occupation

Occupation	$\mathrm{N} \quad$ Normal BP		JNC-7 Classification			
			Pre-Hypertension	Stage-I	Stage-II	(Stage-I+stage-II) HTN
Farmer	843	698	26	57	62	119
		(82.79)	(3.08)	(6.8)	(7.4)	(14.1)
house wife	1039	$\begin{gathered} 849 \\ (81.71) \end{gathered}$	$\begin{gathered} 28 \\ (2.69) \end{gathered}$	$\begin{gathered} 90 \\ (8.7) \end{gathered}$	$\begin{gathered} 72 \\ (6.9) \end{gathered}$	$\begin{gathered} 162 \\ (15.6) \end{gathered}$
Household work*	36	19	15	2	0	02
		(52.77)	(41.66)	(5.6)		(5.6)
professional	20	1	17	1	1	02
		(5)	(85)	(5.0)	(5.0)	(10.0)
skilled worker	162	126	15	8	13	21
		(77.77)	(9.25)	(4.9)	(8.0)	(13.0)
Total	2100	1693	101	158	148	306

*un-married young females. $\chi^{2}=416.340, \quad \mathrm{df}=12, \quad \operatorname{sig}=0.000$
Table 10. Distribution of hypertension as per occupation

	OCCUPATION	JNC-7 CLASSIFICATION			HTN (stage-I+stage-II)	Total
		pre-hypertension	stage-I	stage-II		
	Farmer	26	57	62	119	145
		(25.74)	(36.07)	(41.89)	(38.88)	(35.62)
	house wife	28	90	72	162	190
		(27.72)	(56.96)	(48.64)	(52.94)	(46.68)
	household work	15	2	0	02	17
		(14.85)	(1.26)	(0.0)	(0.65)	(4.17)
	Professional	17	1	1	02	19
		(16.83)	(0.63)	(0.67)	(0.65)	(4.66)
	skilled worker	15	8	13	21	36
		(14.85)	(5.06)	(8.78)	(6.86)	(8.84)
Total		101	158	148	306	407
		(100)	(100)	(100)	(100)	(100)

$\chi^{2}=102.075, \quad \mathrm{df}=8, \quad$ sig $=0.000$
with normal bp, 12(16.43\%) prehypertensives and 7(9.58\%) with hypertension.In 14 postgraduates, $01(7.14 \%)$ with normal BP, $12(85.71 \%)$ prehypertensives and $01(7.14 \%)$ with hypertension. The above table suggests that subjects with higher education levels have lower prevalence of blood pressure. Out of 306 hypertensive study subjects, 252(82.35\%) were illiterate, $19(6.20 \%)$ primary pass, $7(2.28 \%)$ middle pass, $20(6.53 \%)$ matric pass, $7(2.28 \%)$ intermediate and $01(0.32 \%)$ postgraduates. $119(14.1 \%)$ farmers are hypertensives, 162(15.6\%) house wives, 2 (5.6%) household working unmarried females, $02(10.0 \%$) professionals and $21(13.0 \%)$ skilled workers were hypertensives. Highest prevalence in house wives (15.6%) may be due their sedentary habbits/ less physical acivity. Most of the skilled workers were Shawl Workers, Carpet Weavers, Chain stitch workers, all of them working indoor, with meagre physical activity. 119(38.88\%) are farmers, $162(52.94 \%)$ house wives, 02(0.65\%) household working un-married females, $02(0.65 \%$) professional and 21(6.86\%) skilled workers.

DISCUSSION

Distribution of hypertension as per gender

The overall prevalence of hypertension was 14.5% (306 out of 2100), 15.3% (167 out of 1093) females and 13.8% (139 out of 1007) males. Among females hypertension (167), more subjects were in stage-I hypertension 8.5% than in stage-II hypertension 6.8%. Among males more subjects were in stageII 7.3% than in stage-I hypertension 6.5%. In a WHO India Report (8) an overall weighted pooled prevalence rate of hypertension was 15.74% found in various studies conducted in rural areas of India ${ }^{9}$. An ICMR study in 1994 involving 5537 individuals demonstrated prevalence of hypertension among males and females as 13% and 10% respectively in rural Haryana (ICMR). Bhat et al. (2002) April 2002, INDIAN PRACTIONERS, has done same study in pulwama district using JNC-V classification and his overall prevalence of hypertension was $8.6 \%, 6.7 \%$ in males and 10.4% in females, there is a gap of 8 years. Raina et al. (2009) Jan-March, JK Sciences, observed in rural Jammu the overall prevalence of hypertension $13 \%, 11.19 \%$ in males and 14.71% in females. There are geographical and dietary differences. Rajeeve Bhardwaj et al. (2010) Jully 2010 JAPI, observed in rural population of HP, overall prevalence of 35.89%.varied geographical, dietary factors. Sidu et al. (2005), Journal of Human ecology, observed in adult Panjabi females prevalence of 20.15%.

Distribution of hypertension as per age

In present study among males the prevalence of hypertension was increasing with increase in age, 1.25% in 18-31 age group, 4.84% in $32-45$ age group, 9.19% in $46-59$ age group and 72.22% in ≥ 60 age group. Similar results were seen in females, 3.40% in 18 to 31 age group, 10.87% in $32-45$ age group, 21.04% in $46-59$ age group and 56.61% in ≥ 60 age group. With advancing age the atherosclerotic changes make the blood vessels less distensible, so there is increase in blood pressure with increase in age, thus increasing mortality and morbidity. Similar findings were observed by Malhotra et al. (1999) in 1994-95, journal of human hypertension, Franklin M M White
et al. Aug (1986), CMAJ, Ibrahim et al., Egypt (1999), Saudi Journal of Kidney Transplant, Sampti et al. (2009), IJCM Jully 2009 in rural Maharashtra.

Distribution of hypertension as per educational status

The prevalence of hypertension was highest in illiterates 15.47% and goes on decreasing with increase in educational status, being lowest in postgraduates 7.14%. This may be due to healthier life style in educated population. Ghattargi, Thite et al. (2009), also observed the same in rural Maharashtra in 2004.

Distribution of hypertension as per occupation

The prevalence of hypertension is more in house wives 15.6%, most of them being illiterate and having less physical activity. The next higher group were farmers 14.1%. Most of the farming these days is done by Behari Labourers and by adopting modern methods of farming, tractors instead of bullocks. Another cause may be illiteracy among farmers and un-healthier life styles.

Summary and Conclusion

1) The overall prevalence was $14.56 \%, 13.8 \%$ in males and 15.3% in females. $4.84 \%, 8.5 \%$ and 6.8% females were in pre-hypertension, stage-I and stage-II hypertension respectively. Among males 4.76% in pre-hypertension, 6.5% in stage-I and 7.3% were with hypertension.
2) The distribution of hypertension, among pre-hypertensives, 52.47% were females and 47.52% were males. Among hypertensive subjects, 54.47% were females and 45.42% were males.
3) Widowed study subjects had higher tendency to have hypertension 32% in males and 30.89% in females.
4) Hypertension was more observed in illiterates than educated population being 15.47% in illiterates and goes on decreasing as educational status increases. Lowest in postgraduates 7.14%.
5) Hypertension was more in housewives 15.6% followed by farmers 14.1% and skilled workers 13%.

REFERENCES

Aram V. Chobanian, George L. Bakris, Henry R. Black, William C. Cushman, Lee A. Green, Joseph L. Izzo, Jr, Daniel W. Jones, Barry J. Materson, Suzanne Oparil Jackson T. Wright, Jr, Edward J. Roccella and the National High Blood Pressure Education Program Coordinating Committee Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure Hypertension 2003;42;1206-1252; originally published online Dec 1, 2003.
Bhat NA; Kamili MA; Allaqaband GQ. Department of Medicine, SMHS Hospital and Government Medical College, Srinagar India Hypertension in South Kashmir, Indian Practitioner. 2002 Apr ; 55(4): 215-9.
Dr Jan Ostergren of Sweden, S Karolinska University Hospital. The associated press 2009, Health MSN Home Web address http://www.msnbc.msn.com/id/18660422/.

Franklin M.M. White, MD Linda H. Pereira, BA J. Barry Garner, PhD. Associations of body mass index and waist:hip ratio with hypertension.CMAJ, VOL. 135, AUGUST 15, 1986.
Ghattargi GH. Department of Preventive and Social Medicine, Swami Raman and Teerth Rural Medical College, Ambajogai-431517, Dist-Beed (Maharashtra) India Volume 8: Number 4 : ISSN 0972-0669 OCTOBER-DECEMBER 2004, south east journal of preventive cardiolog Indian Guidelines for the management of hypertension-II 2007 published under the stewardship of $\operatorname{API}($ Association of Physicians of India)
ICMR Task force project on Collaborative study of coronary Heart Study
Malhotra P, S Kumari, R Kumar, S Jain and BK Sharma Prevalence and determinants of hypertension in an unindustrialised rural population of North India Journal of Human Hypertension (1999) 13, 467-472
Malhotra, P., S. Kumari, R Kumar, S Jain and BK Sharma Lt Col VK Agrawal, Col R Bhalwar, DR Basannar Prevalence and Determinants of Hypertension in a Rural Community MJAFI 2008; $64: 21-25$ In a WHO India Report (17) an overall weighted pooled prevalence rate, revised report.
Mohsen Ibrahim M et al. Epidemiology of Hypertension in Egypt. 1999;10(3) : P 352-356.
Raina, D. J, D S Jamwal, Prevalance Study of Overweight/Obesity and Hypertension Among Rural Adults, Vol. 11 No. 1, January-March 2009 www.jkscience.org

Rajeev Bhardwaj, Arvind Kandoria, Rajeev Marwah, Piyush Vaidya, Bakshish Singh, Pravesh Dhiman, Avinash Sharma, Prevalence, Awareness and Control of Hypertension in Rural Communities of Himachal Pradesh. JAPI • July 2010 • VOL. 58.
Rajeev Gupta, and V. P. Gupta. Hypertension epidemiology in India: lessons from Jaipur Heart Watch CURRENT SCIENCE, VOL. 97, NO. 3, 10 AUGUST 2009. Harison"s internal medicine 17th edition 2008 RCH Action Plan 2007 of District Pulwama Jammu and Kashmir INDIA.
Sampatti Sambhaji Todkar, Venktesh V Gujarathi1, Vinay S Tapare Department of PSM, Dr. V.M.Govt. Medical College Solapur, 413 003, Department of PSM, GMC, Aurangabad, India. Period Prevalence and Sociodemographic Factors of Hypertension in Rural Maharashtra: A Cross- Sectional Study Indian Journal of Community Medicine / Vol 34 / Issue 3 / July 2009.
Sidhu S., K. Kumari and Prabhjot Socio-demographic Variables of Hypertension Among Adult Punjabi Females, J. Hum. Ecol., 17(3): 211-215 2005.

The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7) Publication Date: December 2003 in Hypertension. 2003; 42:1206.

[^0]: *Corresponding author: Dr. Sajad Hamid SKIMS Medical College

