Structural, electrical resistivity, thermal and mechanical properties of Bi- Sn- Pb- Cd- In- TiO2 and Bi- Sn- Pb- Zn- In- Ag alloys have been investigated. Melting temperature of Bi- Sn- Pb- Cd- In- TiO2 alloys increased with increasing TiO2 content and decreasing Bi content. Elastic modulus, Vickers hardness, internal friction, electrical resistivity and thermal parameters varied with increasing TiO2 content and decreasing Bi content. Melting temperature, internal friction, Vickers hardness of Bi- Sn- Pb- Zn- In- Ag alloys decreased with increasing Bi content and decreasing Sn content. Elastic modulus and electrical resistivity of Bi- Sn- Pb- Zn- In- Ag alloys increased with increasing Bi content and decreasing Sn content. The Bi49Pb15Sn22Cd3In10 (TiO2)1 alloy has best properties (low melting point= 91 ºC, high elastic modulus= 36.2 GPa, high Vickers hardness= 19.1 kg\mm2, and lower internal friction= 0.055) for nuclear applications. The Bi25Sn62.5Pb3Zn3In4Ag2.5 alloy has best properties (low coast, low melting point= 174 ºC, high elastic modulus= 30.6 GPa, high Vickers hardness= 19.25 kg\mm2, and adequate internal friction= 0.078) for electrical fuse.